
11/01/2022 Martin Head

 DisCharge Decompiler

DisCharge is a decompiler for SuperCharged & TurboCharged programs. It is still in development,
and features are added, and changed when needed.

DisCharge cannot just convert an executable file back into a ready to run SuperBASIC program. It
may require some manual intervention during decompiling, and the resulting SuperBASIC program
will need some tidying up before it will load and run correctly.

This document is an introduction to the steps required to convert a SuperCharged, or TurboCharged
executable task, back into a SuperBASIC program.

DisCharge comes as five programs. A program to process the executable program, trying to identify
the various sub-routines used in the compiling stage to perform the various SuperBASIC
commands. And four programs to produce the SuperBASIC code. Two, for SuperCharged
programs. And two, for TurboCharged programs. For each of programs that were compiled with the
‘Include Nos’ option, and one for programs with the ‘Omit Nos’ option. Where line numbers are
included, or omitted from the compiled executable.

Note, That while there is a program to deal with SuperCharged programs without line numbers. I
don't know how to generate a SuperCharged program without numbers. The only example I have
seen is the SuperCharge Parser program. This may have been produced by a special version of
SuperCharge created by the author.

SuperCharged and TurboCharged programs share many similarities, but there are enough
differences to create complications, by trying to have one program deal with all four combinations.

It's a good idea to copy the executable program to another drive, or sub directory to work on. As the
decompiler will generate a number of working files.

There are 3 steps involved in converting a compiled program back to a SuperBASIC program.

The first is to identify the compiler used. Locate and identify the machine code routines used to
replace the SuperBASIC commands. And create a _codes file for the next stage.

The second stage is the run the decompiler that produces the SuperBASIC.

The third sage is to tidy the resultant SuperBASIC so that it can be loaded and run.

1

Step 1 - Disassemble the executable program, and process the dump file.

Load and run the DisCharge_bas program.

Enter the name of the program to decompile.

The program will then tell you the names of the files it will create, and where it thinks the library
files are for DisCharge.

After pressing 'Y'. If the Talent, Assembler Workbench is not in the home directory. You will be
asked for it's location.

The disassembler will then be started.

2

Press 'F1' to start the disassembly. When the disassembly has finished.
Type 'unlink', 'close prn' and 'quit'.

The executable will then be processed. Creating a modified version of the disassembly, and a
_codes file, which is used in the next phase to identify the purpose of the subroutines used in the
compiled version of the original SuperBASIC program.

At this point you can press 'N' to stop, or press 'Y' to load the appropriate program for the next
phase.

The program will display some information on the disassembled program. Some of it may be useful
later. Like the 'Dump A6 value'. This value is used extensively by the compiled program as a
reference point for various offsets. And the 'Line number key code'. This is the code used to identify
the start of a SuperBASIC line. It is followed by a word containing the line number.

This information will also be saved in a _dmp_info file.

3

Note - TurboCharge has a compile option to omit line numbers. If this option was used during
compilation, then the line number key will either be blank, or FFFF. As there will not be any line
number markings in the compiled program.

For TurboCharged programs, there will be a scan of the executable file for any embedded
SuperBASIC extensions, and give you the option of extracting them to a separate file.

In the above screen dump you will see that it mentions that there are 2 potential problems in the
codes file. It is not unusual for Turbo'ed programs to have a couple of problems with unidentified
codes that don't cause any problems later on. But more than two, may well cause problems later
when DisCharge tries to generate the SuperBASIC code. See later in this document for ways to
identify unknown and duplicated codes.

The _codes file produced by this step is very important for the decompilation stage. Unidentified
codes are likely to stop it in it's tracks.

Once the _codes file has been produced, it can be corrected in a text editor. So you don't need to re-
run the first step again.

During the first stage, The decompiler will generate some files. With the same name as the
executable, plus an extension.

_codes This is a reference table of decompiler codes to the code routines.
_dmp This the disassembly of the executable program.
_dmp_lib This the disassembly above after code routine identification.
_dmp_info This is the information displayed on screen during stage 1.

4

Step 2 - Do the decompilation.

This stage will be started automatically from the last stage. If the last stage was stopped, or you
want to restart decompilation at a later time. You can start this stage manually by loading
SuperDisCharge1_bas for a SuperCharged program, TurboDisCharge1_bas for a TurboCharged
program with line numbers, or TurboDisCharge2_bas for a program without line numbers.

A copyright message, and version number will be displayed. Note that the version number displayed
for Turbo programs is not the Turbo version, but the Turbo code generator version, Which is usually
different.

Code file problems will be reported, along with the number of Array declarations and
Procedure/Function calls.

Code file errors will be “-1 index found” errors, or “Code Array index already in use” errors.
-1 errors, indicate entries starting with -1, and will be ignored.

Code Array index already in use errors, indicate that it has found duplicated routines in the dump
file. The previous one found will be ignored, and the current one used instead.

These duplications may, or may not need to be sorted out. At the time of writing, there are known
duplications of codes 55 and 105, Which need to addressed. However duplications of code 191,
does not seem to cause a problem.

When asked for a filename, If you just press Enter, then the de complication will be sent to the
screen. This is best thing to do at first to check to see if there are any problems while decompiling.

5

When the program finishes decompilation, you can restart it by typing GO TO 1000

You are libel to see some rubbish at the end of the decompile, as the decompiler may over-run the
end of the program before it notices that it's got there.

You only need to RUN the program once, after that use GO TO 1000 to restart it.

Then enter a filename to save it to. A _bas extension will be added automatically, and a _log file
will also be created.

If you have some problem and want to pause the decompilation. There is a program line, just past
line 1000 - pauseLine=40000

This line allows you to pause the decompilation at a BASIC line number. And then continue one
line, or step at a time, by pressing any key. Using a number greater than 33000 will disable the
pause, as there should not be any line numbers greater than 32767. However programs compiled
without line numbers, can end up with line numbers above 32767 and would need to be edited in
the next stage.

The decompilation will begin, and run up to the pauseLine variable, Press any key to continue one
line or instruction at a time. Depending on whether line numbers are omitted or not.

6

If the program encounters a Prefix code it does not understand, you will see the code highlighted.

If you see something like this, then the decompiler has encountered a code it does not it does not
know how to deal with. In this case 8E38. At this point you may be able to continue by pressing any
key.

However you may find that the program will not. But you can always BREAK out of the program,
and restart with GO TO 1000

You may also see warning messages, and other reports going to #0 during the decompilation, most
of which will also appear in the _log file.

See later in this document for help in identifying unknown codes.

7

Step 3 - Tidy the SuperBASIC program

The SuperBASIC program produced is unlikely to Load without errors, So load the produced
BASIC program into a text editor. And check for obvious problems.

Here are some of the things to look out for.

With TurboDisCharge2_bas, you may see a first line of 100 RETRY_HERE This may be a ‘false’
program line due to there not being any line number markers in the program for the decompiler to
know exactly where to start decompiling from.

If an empty program line is found in the code (where line numbers are not omitted) a ‘:’ (colon) will
be displayed, possibly followed by a END IF/SELect.

The ‘:’ line may be the start of a REMark, a REPeat loop, a SELect ON, or a DATA statement.

Procedures and Functions
DisCharge cannot tell the difference between a DEFine PROCedure, and a DEFine FuNction, and
will produce code like.

DEFine PROCedure/FuNction procFun680

search for calls to procFun680 to establish if it is a Procedure or a Function, and edit the line
accordingly.

Super/TurboCharge treats RETurn and a END DEFine the same. Discharge will try to differentiate
and fill in the RETurn's and END DEFine’s for you. If it has problems, it will just use.

RETurn/END DEFine

In a Turbo program compiled in Structured mode, DisCharge cannot keep track of the
Procedure/Function names for the END DEFines.

In a Turbo program compiled with omitted line numbers, DisCharge may have problems with
Procedure and Function parameters confusing them for LOCal variables. The same identification
codes are used for parameters and LOCal variables. And as there are no line number markers to act
as a separator, DisCharge can get confused, you may see something like

DEFine PROCedure name
LOCal var922Cvar922C

Where var922C is a parameter, and not a LOCal variable.

If you look at the procedure call, you will know how many parameters there should be.

Note, Discharge may get confused with GO SUB routines. Treating them as Procedures. The
compiler treats GO SUB as a Procedure without parameters.

8

Missing comma’s after channel numbers
You may find that some commands with channel numbers have the comma after the channel
number missing.

CSIZE #1 1,0

This is not a problem with the decompiler itself, but the compiler not recording that a comma is
required.

REPeat loops
Super/TurboCharge converts REPeat loops into GO TO’s.
The TurboDisCharge program tries to identify the NEXTs and EXITs for you and supplies line
numbers.

Look out for GO TO’s which point back to a line right after a line containing just a colon (:)

Note - In a TurboCharged program with line numbers omitted, you may not get this line.

This GO TO is probably the END REPeat.

Within this loop, If you see a GO TO back to the start of the loop, It is probably an NEXT loop. And
a GO TO to just past the END REPeat, is probably a EXIT loop.

You don’t always get the REMark and GO TO’s that neatly give line numbers. For example this
code for an actual decompile, has negative GO TO’s. This is caused by there not being an actual line
number to EXIT to, as the END REPeat is in the middle of a statement.

15040 var8970% = 0
15045 INPUT#9,var8818$: IF EOF(#9) THEN GO TO -29220 : END IF
15060 PRINT#3,var8818$: var8970% = ((var8970% + 1) MOD 4) : IF
 (var8970% = 0) THEN procFun3000(" ") : END IF
15070 IF (var8858% = 27) THEN GO TO -29220 : END IF
15075 GO TO 15045 : CLOSE #9 : DELETE var880C$ & var8828$ &
 "_zxzx" : RETurn/END DEFine

After hand decompiling the GO TO’s the code becomes.

15040 var8970% = 0 : REPeat loop15040
15045 INPUT#9,var8818$: IF EOF(#9) THEN EXIT loop15040 : END IF
15060 PRINT#3,var8818$: var8970% = ((var8970% + 1) MOD 4) : IF
 (var8970% = 0) THEN procFun3000(" ") : END IF
15070 IF (var8858% = 27) THEN EXIT loop15040 : END IF
15075 END REPeat loop15040 : CLOSE #9 : DELETE var880C$ &
 var8828$ & "_zxzx" : END DEFine procFun15000

9

SELect ON
Super/TurboCharge converts SELect’s into tests and GO TO’s. DisCharge will try to convert them
for you. But a SELect ON y line is not recorded as such in the Charged program, and the
decompiler outputs a program line just containing a ‘:’ (colon).

Note - In a TurboCharged program with line numbers omitted, you may not get this line.

and the SELect lines look like

[SELect] ON var8914 = 8 : procFun2940

If you have a line with just a colon on it, just before the SELect lines. Then it’s probably a long
form SELect. And the colon line would be SELect ON var8914, and the select line would be ON
var8914 = 8 : procFun2940

If there is no colon line. Then it’s probably a short form SELect. And the SELect line would be
SELect ON var8914 = 8 : procFun2940

IF..THEN
If you see something like, IF 1 THEN... this is probably IF COMPILED THEN...
Likewise, IF 0 THEN... probably means IF NOT COMPILED THEN...

DATA statements
The data in DATA statements is not stored within the encoded version of the SuperBASIC program
in Super/TurboCharge. They are stored all together in one block outside of the SuperBASIC area.

Within the SuperBASIC area, there are empty lines where they should be. When decompiled they
appear as a line with just a colon.

Note - In a TurboCharged program with line numbers omitted, you may not get these lines.

and at the end of the decompiled program there is a list of the DATA values

DATA statements

00274828 DATA "Alter","Compile","Edit","Invert","Load"

Search the listing for line like

25904 RESTORE ** Line number to be determined ** data00274828

When you determine where to put the DATA lines in the program, you can amend the RESTORE
line.

10

FOR..NEXT..END FOR statements
SuperCharge uses the same code for a NEXT and a END FOR in FOR loops.

So you may need to change a END FOR to a NEXT for a FOR..NEXT..END FOR loop.

If the programmer of the original SuperBASIC program used FOR..NEXT as a loop, instead of a
FOR..END FOR loop. Then SuperCharge will add the missing END FOR. I am not exactly sure
how SuperCharge decides where to put them. So you may find END FOR’s in odd looking places.

You may also encounter a problem when an integer is used as the control variable in a FOR loop. It
may not have the % on the end in the FOR line, but in the loop, and the END FOR it will be there.

Turbo Compiled programs with omitted line numbers
Complied programs without embedded line numbers are somewhat trickier to decompile. The
embedded line numbers make good anchor points to keep track of where you are.

Without line numbers, DisCharge does not know how many instructions appear on one program
line, so it gives each instruction it’s own line. And it calculates this line number from its current
position in the compiled program.

This can cause GO TO’s to not point at line numbers that exist, so you may need check that the
next line after the non existent line number looks to be correct.

It’s possible that DisCharge may generate line numbers greater that 32767 which will cause
problems for the interpreter if you try to LOAD it.
You can get around this problem by splitting the program into two parts in a text editor and
renumbering the second parts line numbers to be below 32000. Then LOAD each part, RENUMber,
and MERGE back together.

You may also find that DisCharge gets confused when it tries to determine the parameters of a
Procedure or Function with LOCal variables. It may think that the LOCal variable is a parameter,
as there are no ‘line number’ breaks in the program.

Threaded and Inline code
Compiled programs are usually generated in Threaded code. However sections of the code can be
generated in Inline mode, where instead of having the usual coded version of the original
SuperBASIC program stored, you have machine code routines buried inside the coded version of
the original SuperBASIC program.

The original SuperBASIC has these lines surrounded by a REMark +, and a REMark -

At the time of writing this, I have only come across one SuperCharged program that uses Inline
code. And at this time I have not thought of a method of automatically decoding this Inline code
back into SuperBASIC.

11

I have added to DisCharge, limited support for Inline code. When you decompile a program using
Inline code, it will generate code something like.

44 REMark +
46 REMark ** Inline code line **
47 REMark ** Inline code line **
48 REMark ** Inline code line **
49 REMark ** Inline code line **
50 REMark ** Inline code line **
51 REMark -

Where ** Inline code line ** means that the decompiler found a program line of Inline code.

This code is made from joining up the code routines that are normally called separately. However
there is nothing separating the code segments, so the decompiler does not know how to identify, and
separate the routines.

Hence this code will need to be decompiled by hand. See the Technical Notes document for more
details.

As I have not seen Inline code used often, you may need to change the value of the variable
inlineEndMarker in the procedure GetVersion in the DisCharge programs for versions of
SuperCharge below V1.19, and Turbo versions below 5.09

\ Print separator
The \ (backslash) print separator may not appear in the decompiled program as the same code is
used at the end of every PRINT line. If I make it appear you get backslash characters at the end of
every PRINT line. So a line like 100 PRINT "hello" would decompile as 100 PRINT#1,"hello"\

** stack empty**
If you see this, then the decompiler had difficulty earlier identifying a procedure/function. And
assumed it to be Procedure, where it was in fact a Function.
It later expected something to be on the stack (the Function), And it was not there. So it replaces the
missing stack entry with ** stack empty **.

Somewhere before the ** stack empty ** you should find what looks like a Procedure call, but if
you look at the definition, you should find it's a Function.

If you see something like
5100 procFun31204
5110 procFun31256
5120 var8F90=(** stack empty ** +PEEK_W(**stack empty **))
Then first procFun should be placed as the last stack empty, and the second procFun as the first
stack empty. To give this

5120 var8F90=(procFun31256 +PEEK_W(procFun31204))

12

Procedures and Functions
QDOS or SMSQ/E may get upset about brackets with parameters in Procedure and Function calls.

Brackets in Procedure calls
procFun1234 (1,10) bad
procFun1234 1,10 good

Empty parameters in Function calls
x = procFun1236() bad
x = procFun1236 good

Functions that return a string may need a '$' appended onto the end of the Function calls and the
Function definition.

13

LOADing the generated program
After you have tidied the generated BASIC into something that looks like it may load and run. You
can try to LOAD it. It is best to try loading in SMSQ/E, as that will report the line numbers with
syntax errors in #0. Once you get the program to load without error. When you try to RUN it you
may get errors like.

At line 277:2 incomplete SELect clause

243 ON var8978 = 99 :
247 IF ((var8938 = 0) OR var88F8%) THEN procFun1953 : ELSE
249
275 ...
277 procFun1727 : END IF
279 procFun1259

Although SMSQ/E complains about a SELect clause, In this case it’s the IF..THEN..ELSE it’s upset
about.

If you change the code to something like this -

243 ON var8978 = 99 :
247 IF ((var8938 = 0) OR var88F8%) THEN
248 procFun1953
249 ELSE
250 ...
275 ...
277 procFun1727
278 END IF
279 procFun1259

SMSQ/E will then stop complaining about it.

Once you have the decompiled program running, You can set up the original compiled program
running in Qemulator, and the decompiled program running in QPC2 next to it. Then compare the
operation of the two programs.

One of the problems that is likely to be seen, is where the wrong separators have been used in
PRINT statements causing layout problems. It’s difficult for DisCharge to keep track of the current
print position, and which channel is currently being used.

14

What can possibly go wrong?

Well, there are a few things that can go wrong and stop decompiling. In the order that they may
occur.

1- You try to decompile a program that was compiled with a version of SuperCharge/Turbo that the
decompiler does not know about.

In this case you will need to add the new version in the GetVersion procedures in the Discharge
programs to recognize the new version.

With a SuperCharged program, you will probably find that a lot of the code routines will match.

In the case of Turbo'ed programs, you will have to create both a TCLibrary5xx_lib and a
TCLibrary5xx_id file. Then manually identify all the code routines found in the
executable_dmp_lib file. (more on that later) Adding them to the TCLibrary5xx_lib and
TCLibrary5xx_id files as you go. Expect there to be about a hundred routines to identify.

2 - At the end of stage 1, You find a few potential problems in the executable_codes file.

You could ignore them for now and carry on. If it's unimportant code routine as far as the
decompiler is concerned, you may get away with it. Otherwise you will hit problem 3 below.

The executable_codes file is a list of the code routine numbers, preceded by an identification key
for the second stage program. With -1 indicating that the routine is unidentified.

For example, say there is an entry in the _codes file, -1,9F2A

If you look through the executable_dmp_lib file, you should find something like this

Prefix - 9F2A
Version 5.37 - Checksum = 002E01471C

The version number refers to the compiler version, and the checksum is an identifier for the routine
found.
The first four characters of the checksum is a Hex count of the number of bytes in the routine, and
the following six characters is a checksum of the bytes of the routine.

Identifying routines

There are various ways to identify code routines.

Compare the code routine with routines in the other library_lib files looking for matches. A lot of
the code routines between different versions of the compilers remain basically unchanged. With just
some JMP destinations different.

Use the generated checksums first 4 characters of routine length, to search for routines of the same
length. And visually compare them. Note that some routines are almost exactly the same and just

15

differ in one instruction. For example, one may have a BEQ instruction, and another with a BNE
instruction instead.

Look for system Trap and Vector calls in the routines, which may give a clue to what it does.

3 - Stage 2 decompiling stops with something like

This is telling you that the decompiler has encountered a code 8E38 that it does not know how to
handle. The _codes file will probably have a line -1,8E38 in it. You need to go back to problem 2,
above and identify the code routine.

Once the routine has been identified, you can just edit the _codes file, and do GO TO 1000

The point at which the decompiler stops in the SuperBASIC generation may give you a clue to the
function of the problem code. Or you may need to hand decompile around the problem area to try to
determine the function by looking for clues, like what parameters it receives, and the expected
result (if any).

If you have a copy of SuperCharge or TurboCharge. And you have some ideas of what you think the
code may be. Write a short program using your ideas, then compile it, and then decompile it. And
compare the unknown routine with your ideas. (This is the main method I use in development of the
decompiler)

When you have identified what the routine does, You can look at the CodeArrayKeys documents
to identify the correct index code. And then amend the _codes file.

16

4 - "At line xxxx Pipe not empty" warnings

The decompiler uses a pipe to represent the stack used in the compiled program. This warning is
telling you that the decompiler found some items on this stack, when it reached the end of a
program line.

When decompiling a Turbo program with omitted line numbers, any “At line xxxx Pipe not empty”
reports will only appear when a DEFine PROCedure/FuNction is started. And the xxxx will only
mean the problem occurred before line xxxx, not on, or around it. This is due to the decompiler not
knowing when the original program line ended.

After breaking into the decompiler, PRINT pcount will tell you how many items are left on the
programs ‘stack’, and PRINT getTOS$ will show the top item on the stack.

17

Hand decompiling

If you are trying to identify what a particular routine does, or you think the decompiler may be
decompiling incorrectly. Then you may want to decompile the program manually.

These are a few notes to help you get started decompiling by hand.

The encoded SuperBASIC program in the disassembly listing of the executable file, is located after
the end of the routines marked with ‘Prefix’, and before the list of SuperBASIC keywords at the end
of the listing.

The encoded SuperBASIC program in Super/TurboCharge makes extensive use of a stack,
referenced by the A1 register. Any machine code programmers who have written SuperBASIC
extensions will find this familiar. The Super/TurboCharge stack is the equivalent of SuperBASICs
maths stack.

The encoded SuperBASIC program is stored as a sequence of Word sized instruction codes,
optionally, followed by a (even) number of bytes.

If you examine the CodeArraysKeys documents, it will tell you how many additional bytes are
required by each instruction.

Most of the instructions will manipulate the information that is on the stack. For example Code
Index 20, + Add (float), will take two six byte floating point numbers off the stack, Add them
together, Then place the resulting six byte floating point number back onto the stack.

If you know the line number, of the line you want to decompile, Then in the disassembly listing,
search for the hexadecimal number of the line. For example to find the SuperBASIC line 100,
search for 0064.

Program structures such as REPeat loops, IF..THEN..ELSE, and SELect are converted into GOTO’s

I will now work through a few lines from the sample decompile walk through.

110 CSIZE 1,1 This is the original SuperBASIC line
8ECC 006E
8F0E
8F14 0001
8F14 0001
8F14 0001
8F1A 8604 03831303

8ECC is code index 0, Start of a program line. 006E is 110 in hexadecimal.

8F0E is code index 96, Precedes actual parameters of a command.

The first 8F14 is code index 55, Integer to place on stack, This is the channel number.

Two further 1’s are then placed onto the stack, which are the two parameters for CSIZE.

18

8F1A is code index 97, Keyword (procedure), 8604 is a reference to the CSIZE command.
03 is the number of parameters, 831303 are the Type Byte parameters.
The Type Byte parameters, are as in the SuperBASIC Name Table.
In this case it means #integer integer,integer

Note that the comma after the channel number is missing, as I mentioned above in Tidying the
SuperBASIC program above.

160 REPeat loop
0024D1DC 8ECC 00A0

Note that REPeat loops start with an empty line. DATA lines, SELect ON, and REMarks are also
empty lines

180 IF a$=CHR$(27) THEN EXIT loop
0024D1F8 8ECC 00B4
 91A8
 91A8
 951A 89D4
0024D204 8F14 001B
 95A2
0024D20A 95B0
 965A 991E
0024D210 8E38 9966

The two 91A8’s are code index 58, Put an integer 0 on the stack.

951A is code index 61, Fetch a string variable onto the stack, the two preceding zeros on the stack,
mean the whole string. If there was say, a 1 and a 5 on the stack, then it would have been the
string(1 TO 5). The 89D4 is a reference to the string variable (a$).

8F14 is code index 55, Integer to place on stack, 001B being 27.

95A2 is code index 151, CHR$(), Convert the 27 on the stack to a string character.

95B0 is code index 3, = Equals (string), Remove the two strings on the stack, compare them, and
place back on the stack, a True, or a False.

965A is code index 140, IF..THEN, If there is a False on the stack, then jump over the next bit of
code to the offset 991E, Which is an offset from the A6 register to jump to. The calculation is A6-
($10000-offset) In this case A6 is $2538F6 and the calculation is $2538F6-($10000-$991E) =
$24D214 which is the start of the next program line 190.

8E38 is code index 160, GOTO, Continue program execution at the offset 9966, Which is worked
out as above $2538F6-($10000-$9966) = $24D25C. Which is the start of the program line 220.

19

200 x=x+1
0024D23E 8ECC 00C8
0024D242 9674 89D8
0024D246 97D2 080140000000
 97DC
0024D250 91B6 89D8

9674 is code index 60, Fetch a floating point variable onto the stack. The 89D8 is a reference to the
variable (x).

97D2 is code index 56, Place a floating point number onto the stack, 080140000000 being 1.

97DC is code index 20, + Add(float), Take the two numbers on the stack, Add them together, and
place the result back on the stack.

91B6 is code index 63, Assign a variable (float), Store the result back in the variable referenced by
89D8.

210 END REPeat loop
0024D254 8ECC 00D2
0024D258 8E38 98EA

8E38 is code index 160, GOTO, Continue program execution at the offset 98EA, Which is worked
out as above $2538F6-($10000-$98EA) = $24D1E0. Which is the start of the program line after the
REPeat loop, which in the case of the sample program is line 170.

220 DEFine PROCedure Setup
0024D25C 8ECC 00DC
0024D260 8E38 99F0

20

