
Example walk-through of a decompilation with problems 11/01/2022

This is an example of trying to decompile Digital Precisions Desk Top Publisher program.

Load and run the Discharge_bas program

So far, so good. It reports there are a couple of potential problems in the codes file.
We now press 'y' to start the main decompiler.

Something's gone wrong right from the start. There is a problem with code $9B6C while analysing
arrays.

If we open the _codes file in a text editor.

Note that 9B6C has been assigned a code of 169. And if we look at the Code array keys document,
or the TCLibrary510_5_id file.

We see that code 169 is used for EXIT loop.

If we now look at the created disassembly _dmp_lib file. And search for 9B6C we find.

Notice that this is the first identified code routine 9B6C. You can tell because the routine has the
header after the routine. And all those zeros above it, does not look like machine code.

The first code routine is usually a GO TO code of 160, But as the publisher program is very large,
we would expect it to be a long GO TO, code 240.

Note that it's been identified as a code 169, which is used in EXIT loop's. note the Checksum value.

If we look at the TCLibrary510_5_id file again.

Notice that the checksum for code 169, and 240 are the same. This is an example of there being two
identical code routines, with different uses

So we can change the 169,9B6C in the _codes file to 240,9B6C

We are probably fixing another problem at the same time.

code 169 was defined twice, this is probably the real EXIT loop.

Code 81 is assigned as both A580, and B4AA. And code 82 is assigned as both A58A, and B4B4

If you look at the Code array document, you will notice the code 81, and 82. Do the same job as
codes 290 and 291. So we can amend B4AA to 290, and B4B4 to 291, in the _codes file.

This leaves code 148. Looking in the _codes file, we find code 148 defined twice as 9C12 and
B554.

If we look at code 148 in the Code array keys document, we find it defined in SELect On
as '= (ON)(integer) same as index 1'. And index 1 is defined as '= Equal (integer)'.

So one of these two 148's need to be changed to 1.

You could search the _dmp_lib file for the B554 and 9C12 code and hand decompile around
around them to try to establish which is which (see the Hand Decompiling section in the main
DisCharge manual). Or, you can do a short cut, as I have here.

If you look at the Decompiler Technical Notes document. In the flow diagrams for SElect, you will
notice that after a code 148, there will be either a code 140, a code 144, or a code 145.

in the _codes file you will find there is no codes 140, or 145. But there is a code 144,9D58. If you
search the _dmp_lib file for B554, and 9C12. You will notice that there are several 9D58 following
B554's. But no 9D58 following a 9C12

So it's reasonable to assume that B554 is a code 148, so 9C12 must be a code 1.

You could just try the two codes one way around, and do a decompile. And if you get problems, try
the other way around.

That just leaves one more issue to look at in the _codes file. 822E and 8240.

We already decided earlier that 9B6C is the start of the code routines. So anything lower than that is
probably a miss-identification. That can just be ignored. If you search for 822E in the _bmp_lib
file, you will notice that 8240 does not look like a valid machine code routine.

So RUN the program again, or if you have reset at all. Load and run the TurboDisCharge2_bas
program. (TurboDisCharge2_bas because the Line number key code was $FFFF meaning there are
no included line numbers).

And the decompile now completes. The Unexpected empty stack messages are not errors, but
warnings that the decompiler expected something to be on the stack, but it was not there. These are
most likely to be caused by a Defined Function being miss-recognised as a Procedure. Where a
Function would leave a return value on the stack.

