Example walk-through of a decompilation with problems 11/01/2022
This is an example of trying to decompile Digital Precisions Desk Top Publisher program.

Load and run the Discharge_bas program

Enter the filenome of the Executoble file — dos3_example_publish_
sl

Setting dump file to use os = dos3_examp le_publish_toask_dmp
Setting codes file to crecte gz - dos3_example_publish_tosk_codes

File paoth to Dischoarge libraryg files — dosi_
Ok 7

Llemulgtor file header found in dump file
Compensating

Anclizing Files...

Job mome @ PUBLISHER
Copyr-ight @ 1987 The Turbo Tedm.

Ltz ion S.18

Oump = tort HHE345-FE

Dump A& wolue BEE3407F &

Sub routines stort around BEEZ4SAZE
Subroutine end marker JMP BEE (Ad , dE8 L0
Line number key code TFFFF

First basic line stort TEE349128

Progroam end BEEZ345BFE

Kegyuord toble storts ot TEE345EFA

illsing identity file dos8_TCL ibrargS1@_5_id

egrrching for imbedded SuperBASIC extensions

o SuperBRSIC extensions found

here are 2 potential problems in the codes file

rocessing complete. _lib and codes file created

o gou wont to stort the main decompiler? gen?

So far, so good. It reports there are a couple of potential problems in the codes file.
We now press 'y' to start the main decompiler.

zemu Lo tor header found in executoble file
ompensating

itle 1227 The Turbo Teom.

ersion S5.18

ob Mame PLUELISHER

=1 index found for 822E, ignoring entry
-1 index found for 2248, ignoring entry
Llarning, Code Array index 169 alrecdy in use, Ouverwriting
Llarning, Code Arroay index 21 already in use, Ouerwriting
Llarning, Code Arroay index 22 already in use, Ouerwuriting
Llarning, Code Array index 148 alrecdy in use, Ouverwriting

Zllnexpected code F9BEC found while
nolyzing areoay varicobles and searching
o the stort of the BRSIC progrom.

rogramn Femoved from memory. RUY needed.

Something's gone wrong right from the start. There is a problem with code $9B6C while analysing
arrays.

If we open the _codes file in a text editor.

publish_task_dmp_likx]/publi.sh_ta.sk_dmp_i.nfg)/ publish_task_codes

249, 4R46
160,8224
-1,822E
~1,8240
169, 9B6C
191,9876
T =L

L k3

r

gt 54,5BA4

Note that 9B6C has been assigned a code of 169. And if we look at the Code array keys document,

or the TCLibrary510_5_id file.

TCLibrary310_3_lib - TCLibrary310_3_id = publish_task_codes ' DisCharge_bas |

h]
h]

L&

I
%]

k
%]

; ;
Fa fa
S I T ¥ DY S L

I
[3%]

I
]

I I o
Fu
[/ Y=l W]

F
G L L

[I S =)

We see that code 169 is used for EXIT loop.

156,0046038173,Version 5.10 - EOF() channel
160,000R001786,Version 5.09 - GOTO
161, 000A0016AB, Version 5.098 - STOP
162,000C001ACE, Version 5.10 - READ (integer)
163,000C001ABE, Version 5.10 - READ (float)
164,000C001AB0, Version 5.10 - READ (string)
_165,88%6007E4K, Version 5.09 - RESIORE
169, 000R0016E6, Version 5.09 - Long GO TO, EXIT loop
170,0018004281,Version 5.10 - Long GO TO ,NEXT loop
171, 002E0TE TS Ferston—S—30—BEOEH
173,0012003B11,Version 5.10 - WHEN ERROR 1
173,0012003ADD, Version 5.10 - WHEN ERRCR 1
174 AT TFAAAETT TTawodan L 10 - BEMN WHERE SCART TRETTR

If we now look at the created disassembly _dmp_lib file. And search for 9B6C we find.

publish_task_dmp_lib |’ publish_task_dmp_info rpubl.i.sh_ta.sk_codﬁ]

2180: 00347322 00000000 ori.b #%00,d0
00347326 00000000 ori.b $£00,d0
00347324 00000000 ori.b $#500,d0
0034732E 00000000 ori.b #%00,d0
00347332 00000000 ori.b #500,d0
00347336 00000000 ori.b $500,d0
00347334 00000000 ori.b #%00,d0
0034733E 00000000 ori.b #%00,d0
00347342 00000000 ori.b $£00,d0
00347346 00000000 ori.b $#500,d0
00347348 00000000 ori.b #%00,d0
0034734E 00000000 ori.b #500,d0
00347352 00000000 ari.b $500,d0

0034735 Q0000 ori.
Q00347358 00000000 ari.b
034735E 00000000 ori.b
00347362 2RES movea.l (a5) , a5

£%00,d0

00347364 DBCE adda.l 26,85
00347366 301D move.w (a5)+,do
00347368 4EFE0000 o £00 (a6, d0.w)

Matches Version 5.0% - Long GO TC, EXIT loop
Code Index = 1683

The above routine from 52455, Prefix - 9B6&C
Version 5.10 - Checksum = Q00RA0016E&

Version 5.10 - Checksum = Q008000EQE

Matches Version 5.09% - Some kind of marker??
2210; Code Index = 191
2211; 0034738C 4EDS Jmp (a5)
2212; 0034736E 301D MOVE . W (a5)+,d0
2213 00347370 4EF&0000 Jmp £00 (a6,d0.w)

Notice that this is the first identified code routine 9B6C. You can tell because the routine has the
header after the routine. And all those zeros above it, does not look like machine code.

The first code routine is usually a GO TO code of 160, But as the publisher program is very large,
we would expect it to be a long GO TO, code 240.

Note that it's been identified as a code 169, which is used in EXIT loop's. note the Checksum value.
If we look at the TCLibrary510_5_id file again.

.10 - READ (=string)

.09 - RESTCRE

.09 - Long GO TO, EXIT loop
.10 - Long GO TCO ,HNEXT loop
BLOCE

169, 00080016E6, Vey=sion
o E a2 8T, Version

n tnonotnodn

.10 - MOVE MEMORY4

S5 LED, Version 5.10 - PEEES

tnonononon

240, 000R0016EG6, Vedsion .10 - Mowve program pointer to the long wo
5 P 4EE4ET, Version 5.10 - COPTION CHMDS
159 232,0018004C1E, Version .10 - LEN(=string wvariable) - different to

Notice that the checksum for code 169, and 240 are the same. This is an example of there being two
identical code routines, with different uses

So we can change the 169,9B6C in the _codes file to 240,9B6C

We are probably fixing another problem at the same time.

-1 index found for SZZE, Lgnnrlng entrg
—-1 index found for 2248
larning, Code Arroy iedex 169 ulreudg in ube
larning, Code Arra 21 already in use, Yueruriting
larning, Code Areo 82 already in use, Puveruriting
larning, Code Arrog N 142 oglreagdy in use) Oueruriting

Oueruri ting

Zlnexpected code $9BEC found while
Zoanclyzing oarroy wvaricbles ond searching
gfor the stort of the BASIC progrom.

gPrngrum removed from memory. RUH neseded.

code 169 was defined twice, this is probably the real EXIT loop.

Code 81 is assigned as both A580, and B4AA. And code 82 is assigned as both A58A, and B4B4

& 120,8420 127: 83,B3F¢8
86l: 26,84E0Q 128; 48,B41E
a2i 81,4580 125 EpNE4nn
& 22,458R 130; 82,B4B4
64; 45,4594 131: 99,B4BE
65i 66,4583 132; 154,B506

If you look at the Code array document, you will notice the code 81, and 82. Do the same job as
codes 290 and 291. So we can amend B4AA to 290, and B4B4 to 291, in the _codes file.

This leaves code 148. Looking in the _codes file, we find code 148 defined twice as 9C12 and
B554.

If we look at code 148 in the Code array keys document, we find it defined in SELect On
as '= (ON)(integer) same as index 1'. And index 1 is defined as '= Equal (integer)'.

So one of these two 148's need to be changed to 1.

You could search the _dmp_lib file for the B554 and 9C12 code and hand decompile around
around them to try to establish which is which (see the Hand Decompiling section in the main
DisCharge manual). Or, you can do a short cut, as I have here.

If you look at the Decompiler Technical Notes document. In the flow diagrams for SElect, you will
notice that after a code 148, there will be either a code 140, a code 144, or a code 145.

in the _codes file you will find there is no codes 140, or 145. But there is a code 144,9D58. If you
search the _dmp_lib file for B554, and 9C12. You will notice that there are several 9D58 following
B554's. But no 9D58 following a 9C12

publish_task_codes” publish_task_dmp_lib

33085; 00353B7De 0002ABCC ari.b #%CC,d2
0035B7DA SESE sub.1 a6, d7 .
0035B7DC 00054D4F ari.b #%4F,d5s . MG
0035BTEQ 4445 neg.w ds DE
0035BTEZ 2000 move.l do, do
0035B7E4 ABF4 TLLEGAL INSTRUCTICH .
0035BTEe 89C4C sub.w a4,de L

0 & suba.l SFFFF9BES, al

0035B7EC 0001EEER b 554,41 .
0035BTF0 9DSE W d&, (ad)+ WX
003557 ik $206,d0
0035B7FE SBECO000 sub.w d5,$0000 (a4) 1.,
53700 0035BTFAR EOLE ror.b 208, d6
33701 0035BTFC 9BES0002 suba.l £0002 (a0}, a5

rrrrr LT R T) R Ll TTTTART TRTTR T T T AT

So it's reasonable to assume that B554 is a code 148, so 9C12 must be a code 1.

You could just try the two codes one way around, and do a decompile. And if you get problems, try
the other way around.

That just leaves one more issue to look at in the _codes file. 822E and 8240.

— er———

#—1 index found for 822E, ignoring entry
1 index found for 8248, ignoring entry
drhing, Code Arroy index 169 olred i use, Ouveruriting
= da Arec) jndee Sl g in use, Ouveruriting

urnlng: Code Array index 82 glready in use, Ouverwuriting
arning, Code Arroy index 148 glready in use, Owverwriting

or the start of the BASIC progrom.

rogram removed from memory. EUH needed.

We already decided earlier that 9B6C is the start of the code routines. So anything lower than that is
probably a miss-identification. That can just be ignored. If you search for 822E in the _bmp_lib
file, you will notice that 8240 does not look like a valid machine code routine.

So RUN the program again, or if you have reset at all. Load and run the TurboDisCharge2_bas
program. (TurboDisCharge2_bas because the Line number key code was $FFFF meaning there are
no included line numbers).

Enter the filenome of the Executoble file — dos3_exomple_publish_
sl

Using codes file - dos3_example_publish_tosk_codes
0]y

Glemu Lo tor hegder found in executable file
compensdting

Title 1227 The Turbo Teom.

Lersion S.18

EJ.:-I:- Nome PLBLISHER

E.| gpcii40s
Fick| Exec|Rjob| Hch|| WIM1 "

found for S2ZE, ignoring entry
found for 8248, ignoring entry

Artay s

for- Procedure ond Function calls, code 99
Procedures and Function calls

for Procedure oand Function calls, code 188
Found 247 Procedures and Function calls

Stoart of code HE225232

AS volue Ba32082A

Line number prefix FFFF

Uorigble Init stort BA2SA9ZE BEEESOEE
BASIC progroam stort BE38AAIC BEAES1ER
BASIC progrom end HEZBSC3G BHEEZEE S
Feguord table stort BEZEBcoBd BEEZE02
End of code BRIBEE42

Enter filenoame for output file
_bios & _log extensions will be added
EHMTER olone for output to screen

Filenome —

y to cﬂnfinun.

B.l gpc 4.0
Pick| Exec| Rjob) Hch | WINL 4"

—S£(ESCY to returnE=g","cullpsl” 5
HEZEA408 DATA “"S1. MarginsS§?. ColumnsE3. Column brealksE-54. Grid
<5-50. Disploy guidesEe. Units5-57. Sove logoutSE. Lood logoutS-%
ESC) to returnS=S5"," 123456781
HE3IZASEA DATA "S1. Horiz. gopE?. Uert. gopS-5(ESC) to returnE=%g

12] :
BBSSH5H2 DATA “E1. Dlsplug lugout§2 Disploy gridg3. Displog norg
eZ-5 (ESC) to returnE=g", 2
BEIZASFZ DATRA “S1. LeFt manln§2 RLght mngLnQS Top morgingd.
Bottom marginS- §<ESC) to returnE=5","12341"

HE3IZAESH DATA “"S1. Ho of columns§2 Column gupE-E(ESC) to returre

BBSSHSFB DATA “"&5-51. Continue uraparound§2 FLnlSh W porounds:

H
WH32A-Z8 DATA “S1. Draft Ctel FontsgZ. Bold Ctrl Fontsg3.
Itlic Ctrl Fontsgd. Super Cirl Fonts55. Sub Ctrl Fonts
56, Other Cirl Fontsg7 . Under Ctrl58. Iwrse CtrlS-5¢ESC) to re
urng=g§"," 123436781 "
BEIE2A-F2 DATA "SCsize 1 :ECsize 2 :SLinfeed :5-5<ESC) to returng

"g # Mog :E Y Mag :5-5¢ESC) to returng=g",
"EMext wordSHext lineSlast |ineSHext chaructergLu
t chorocter£Top of textfBottom of text5-5(ESC) to continusgS=%",
1=

BE22AZ0A DATA “"S1. Minimum beforeSZ. Minimum ofterS-5CESC) to re

At line I

At line 817 enpty g

At line 9 ted enpty sto ing code
At line 114388 Unexpected empty stack. Processing cod

And the decompile now completes. The Unexpected empty stack messages are not errors, but
warnings that the decompiler expected something to be on the stack, but it was not there. These are
most likely to be caused by a Defined Function being miss-recognised as a Procedure. Where a
Function would leave a return value on the stack.

