
06/01/2022 Martin Head

SuperCharge & TurboCharge Decompiler Technical Notes

This document contains notes for my use on the Super/TurboCharge decompiler. But it may be of
help for anyone trying to understand how the decompiler programs work.

First a few notes on the internal make up of a compiled executable.

The compiled program can be split into four main parts.

The first is the initialization of the compiled program, error handling, and some common utility
routines.

The second part is a group of routines that are called from the encoded version of the original
SuperBASIC program. These routines preform many of the SuperBASIC commands and functions.
Which of these routines that are included, and the order that they appear in, is dependent upon the
original SuperBASIC program when it was compiled. The Discharge_bas program will attempt to
identify these routines, and assign them to codes, in the _codes file, that are used by the main
decompilers.

The third part is the encoded version of the original SuperBASIC program.
This part is also subdivided into a program/variables initialization area, and the program itself.
In Turbo compiled programs the initialization area may appear both before, and after the program
area.

The fourth part is a list of SuperBASIC commands and functions that are not handled by the
compiled program, but are called from the operating system. These are commands like WINDOW,
PAPER, BEEP, SIN(), etc.
This list may also contain externally loaded commands and functions like DEVICE_STATUS.
SuperCharge has a default set of these command whether used or not, however Turbo only includes
commands that are actually used by the compiled program.

Register usage in Turbo (taken from Turbo source code)

Reg Description Name
--
A1 Maths stack pointer maths
A4 Heap pointer data
A5 Pseudo program pointer thread
A6 Task base pointer base

D0 QDOS Request code register request
D5 Turbo error number error
D6 (low word) BASIC line number lineno

1

Checksums in Library files

In the library files, there is a checksum to uniquely identify the code routines from the second part
of the compiled program. The checksum is comprised of 40 bits. Split into two parts.
A 16 bit byte count of the routine. And a 24 bit checksum of the bytes of the routine. And is shown
as a 10 character hexadecimal number.

The checksum is not a simple sum of the bytes in the routine, but a sum of the sum of the bytes in
the routine. The double checksum is to get around the problem I encountered on more than one
occasion, where two different routines happened to produce the same simple checksum.

example -
00100033C7

This routine contains 16 bytes ($0010), and the 16 bytes make a checksum of ($00033C7)

Procedures and Functions

While Procedures and Functions with the same names appear in all the decompilers. They may
differ in their coding to allow for differences in the decompilers.

PROCedure SaveMe
Saves a copy of the program

FuNction GetString$(ptr)
Returns a string of a standard QDOS string (word length then bytes of string) stored in memory at
ptr

FuNction GetInt(ptr)
Returns a signed integer stored in memory at ptr

FuNction GetWord(address)
Returns an unsigned integer stored in memory at address

FuNction FLT(string$)
Converts a 12 character (six byte) hex string into a floating point number

FuNction FLT$(n)
Convert a Floating point number into a 12 character (six byte) hex string
by PJW & Steven Pool V0.02 03/12/17

FuNction NameListLen(start)
Returns the number of the highest name list entry in the keywords section at the end of the compiled
program
start is the address in memory of the keyword table

2

PROCedure EmptyPipe (channel)
Makes sure the pipe is empty. If it is not empty, it is reported to channel, the pipe is emptied
displaying the contents of the pipe.

FuNction GetTOS$
Remove and return the item at the rear end of the pipe.

PROCedure FlagLine (num$)
If the line number, num$ does not already exist in the Proc/Fun list, it is added.

FuNction CheckProcFun(num$)
Checks to see if the line number, num$ is in the Proc/Fun list. If it is, then create a DEFine
PROCedure/FuNction line.
Also checks for unresolved SELect’s and IF’s.
Returns when line numbers are present

0 If the line number is not in the Proc/Fun list.
1 If its a multiline DEFine PROCedure/FuNction.
2 If its a single line DEFine PROCedure/FuNction.

and when line numbers are suppressed
0 If the line number is not in the Proc/Fun list.
1 If PROCedure/FuNction definitions are in freeform mode.
2 If PROCedure/FuNction definitions are in structured mode.

PROCedure AssignArray(varNum,noElements)
Adds an array entry into the arrayElements array

FuNction GetElements(varNum)
Returns the number of elements for an array. varNum is the SuperCharge reference for the array.

PROCedure ListProcs
List the Procedure/Function line numbers to the log file

PROCedure ReadCodeArray (file$)
Read in the code array from file$. The Format is index number,hex word index value
E.g. 23,90FA - codeArray(23)=$90FA

PROCedure DoDataLines
Create DATA statements. DATAarray(0) holds the number of RESTORE commands.
Other indexes are addresses of data starts.

PROCedure CheckELSE (ptr,type)
Check to see if an ELSE is needed. Ptr is the current program position.
Type, is the size of the GO TO used for the ELSE. 0 = word sized. 1 = long sized.

FuNction CheckENDIF
Check for pending END IF

PROCedure StripIFStack
Strips the top item off the IFStack and ELSEStack string

3

PROCedure LoadFile (file$)
Load the file (file$) and set base addresses initialBase, base, and filelength.

PROCedure CheckValues
Check values in file, and set various pointers.

PROCedure GetVersion
Get program version information and set marker variables.

PROCedure FindArrayElements (sc)
Scan variable initialization area looking for arrays, and filling in arrayElements.

PROCedure StartNewLine (linenumber)
Start a new listing line starting with the supplied line number.

PROCedure InitNewLine
Initialize line decompose variables.

PROCedure InitMain
Set up variables for decompiling.

PROCedure StatementSeperator
If line numbers are suppressed, start a new line. Otherwise output a colon (:) separator.

PROCedure CheckSELects (nl)
Checks for any outstanding SELect processing to deal with. If nl is 1, then we are at the start of a
new line

PROCedure CheckLastSELect
Checks to see if this is the last selection. If so output SELect ON instruction.
Otherwise add to current SELection and continue.

PROCedure ScanProcFun (keycode,progstart,progEnd)
Scans the program for Procedure and Function calls, and adds them to a list.

FuNction CountParameters (ptr)
Try to count the number of parameters in a Proc/Fun definition.

PROCedure ExternalGlobal (ptr)
Deal with EXTERNAL/GLOBAL constructs. Ptr, points at the start of the definitions.

4

Global variables

(sc) SuperDisCharge If one of these two are shown, it means that this variable is
(tc) TurboDisCharge specific to one of the decompilers.

filelength Length of executable file.
initalBase Loaded base address, may be different to ‘base’ if Qemulator header found.
base Start of the executable.
finish End of the executable.
progOffset Offset from start of executable to start of BASIC program area.
prog Running pointer for the BASIC program.
basicProgStart Start of BASIC program area.
varInitOffset Offset from start of executable to start of variable init area.
varInitStart Start of variable init area.
keywords Start of keyword table.
progEnd End of BASIC program area.
TCver$ Library file version from executable.
TCtitle$ TurboCharge copyright message.
jobName$ Executables job name.

DATAendMarker Word that marks the end of any DATA in the initialization area.
DATAexist Flag to indicate if any DATA statements need to processed

0 if no READ instructions encountered
1 if READ instructions encountered

lineStart Word that marks ‘move.w (a5)+,d6’, the start of a BASIC program line.
progStartAdj (tc) An adjustment for the start of the BASIC program in compiler versions that

have a RETRY_HERE inserted before the start of the BASIC program

A6 Address in loaded executable that represents the A6 register.

keywordOffsetAddress that is a base for accessing Keywords. Not a pointer to the keyword
list itself.

lineNoExist 1 if compiled program has embedded line numbers
0 if compiled program does not have line numbers.

freeform (tc) 1 if the FREEFORM option was used during compiling.
0 if the STRUCTURED option was used during compiling.
The decompiler will assume FREEFORM until it encounters a
STRUCTURED style Procedure of Function definition.

lineStartPrefix Prefix code for BASIC program line start, or -1 if no embedded line numbers.
lineCount Number of program lines decompiled.
lineNo Line number of line currently de compiling.
pseudoLine (tc) Address of a reference point when line numbers are suppressed

ch Channel to send decompiled output to.
er (sc) errCh (tc) Channel to send Errors & log to.
proc$ Line numbers of Procedures and Functions, separated by *****

5

pcount Number of items in the pipe.
InIF Number of levels of nested IF’s.
IFStack$ List of 8 character HEX destination addresses of END IF’s or ELSE’s.
ELSEStack$

FORselect$ (tc) Used to hold the selection for FOR statement e.g. “1 TO 5,8,10 TO 12”
FORstep$ (tc) Used to hold the STEP value
FORvar$ (tc) Used to hold the FOR variable reference

newLine 0 = Not at the start of a new line.

InPrint 0 = Not in a PRINT/INPUT.

SELselect$ (tc) Used to hold the selection for SELect statement e.g. “1 TO 5,8,10 TO 12”

InProcFun 0 = Not in a Procedure or Function
InSel Number of levels of nested SELect’s

Indef 0 = Not in any DEFine's. Once in a DEFinition, it points to just past the end
of the definition block.
Unless the STRUCTED option was used during compiling,

Then Indef is set to -1.

channelOpenCheck 0 = No pending channel operations.
currentChannel$ Current channel number, or channel variable/expression.

key Holds the current operation prefix code.

Arrays

nameList() Array of offsets for keywords at end of code.
arrayElements(100,1) Holds the number of elements in arrays, 101 entries of 2
DATAarray(100) DATA statement RESTORE points
codeArray(249) The code array, 250 entries
selStack(20,2) Holds information on nested SELect’s

Second index - 0 Pointer to possible END SELect
1 Pointer to next test/REMAINDER/END SELect
2 Select variable

6

Turbo Toolkit commands handled in the Keywords section
ALLOCATION, DEALLOCATE, SEARCH_MEMORY, PEEK_F, BASIC_F, FREE_MEMORY,
BASIC_B%, BASIC_W%, BASIC_L, BASIC_POINTER, BASIC_NAME$, BASIC_TYPE%,
BASIC _INDEX%, TYPE_IN, SET_PRIORITY, COMMAND_LINE, END_CMD, CONNECT,
CHANNEL_ID, SET _CHANNEL, EXECUTE, EXECUTE_W, EXECUTE _A,
DEFAULT _DEVICE, LIST_TASKS, REMOVE_TASK, SUSPEND_TASK, RELEASE_TASK,
DATASPACE, CURSOR_ON, CURSOR_OFF, EDIT$, EDITF, EDIT%, SET_FONT,
POSITION, SET_POSITION, INTEGER$, FLOAT$, STRING$, STRING%, STRINGF,
GET%, GETF, GET$, INPUT$, DEVICE_STATUS, DEVICE_SPACE

Turbo toolkit commands handled by the compiler internally

PEEK$, POKE$, COMPILED, OPTION_CMD$, DATA_AREA (makes an empty line),
RETRY_HERE, MOVE_MEMORY, SNOOZE, LEN(variable), ERLIN%, ERNUM%

Known SuperCharge versions

Version Copyright message Known by DisCharge
0.14 1985 Simon N Goodwin yes
1.09 no
1.11 1985 Simon N Goodwin yes
1.15 1985 Simon N Goodwin yes
1.17 1985 Simon N Goodwin yes
1.18 yes
1.19 1985 Simon N Goodwin yes
2.00 SuperCharge Digital Precision yes

Known TurboCharge versions

Version Parser? Codegen Copyright message Known by DisCharge
5.00 1986 Simon N Goodwin yes
5.05 1986 Simon N Goodwin yes
5.09 1987 The Turbo Team yes
5.10 1987 The Turbo Team (like 5.09) yes

3.24 2.00/2.04 5.10 1987 The Turbo Team yes
3.24 5.35 2000 The Turbo Team yes

5.09 3.44 5.37 2000 The Turbo Team yes

7

Format of program storage in the compiled program

Where there are differences between SuperCharge and TurboCharge, and the different versions. It
will be maked, as so - (TC 5.10) meaning the format for Turbo with a code generator of Version
5.10 is different.

IF..THEN IF..THEN..ELSE

 If not If not
 true true

Note - In Turbo, the code 160 (word sized GO TO) may be a code 240 (long sized GO TO) in large
programs.

REPeat loops in SuperCharge V2.00

Code 135 (NEXT/ END FOR) is also used in REPeat loops for NEXT

8

Code 140 Code 140

Code 160

True
statements

True
statements

False
statements

Usual SELects SELect ON x
 ON x=..
 ON x=..

Select ON x 1,7,14.2 TO 10 ON x=REMAINDER..

 END SELect

 END SELect

Note - In Turbo, the code 160 (word sized GO TO) may be a code 240 (long sized GO TO) in large
programs. The 145 codes may be 144 in TurboCharge

9

get variable

get value

Code 146/148/149

Code 144/5

get variable

get value

Code 146/148/149

get variable

get value

Code 147

Code 144/5

Code 144/5

get value

Code 160

Statements

Code 144/5

Code 160

get variable

get value

Code 146/148/149

Statements

Code 160

Code 144/5

Code 160

get value

Code 146/148/149

Statements

Code 160

get variable

REMAINDER
Statements

SELect with Turbo versions 5.00 to 5.10 SELect ON x
 ON x=..
 ON x=..

Select ON x 1,7,14.2 TO 10 ON x=REMAINDER..

 END SELect
 END SELect

Note - In Turbo, the code 160 (word sized GO TO) may be a code 240 (long sized GO TO) in large
programs. The 145 codes may be 144 in TurboCharge. Code 140 is equal to IF..THEN

10

get variable

get value

Code 146/148/149

Code 144/5

Code 144/5

Code 140

get variable

get value

Code 146/148/149

get variable

get value

get value

Code 147

Statements

Code 140

get variable

get value

Code 146/148/149

Statements

Code 160

get variable

get value

Code 146/148/149

Code 140

Statements

Code 160

REMAINDER
Statements

Procedure and Function definitions

SuperCharge
Start 2 words Go To (160), A6 offset

Followed by the parameters, if any. Note that the parameters are in reverse order
Integer 4 Words Code 101, variable reference,

Code 62, variable reference
Float 4 words Code 102, variable reference,

Code 63, variable reference
String 6 words Code 85

Code 103, variable reference
Code 190?
Code 64 variable reference

Turbo is as above except for
Start 2 words Go To (160), A6 offset, or may be -
Start 3 words Go To (240), A6 offset, in long programs.
String 2 Words Code 103 or 107 variable reference
Float Array 2 words Code 125 variable reference

If the Structured option was used in compilation, then there is no GOTO (code 160/240) and offset
at the start of the Procedure/Function definition. Except for the first definition, which has a STOP
(code 161).

Local variables

SuperCharge
Integer 2 words Code 101, LOCal variable reference
Float 2 words Code 102, LOCal variable reference
String 4 words Code 55, 256 (max string length?)

Code 103, LOCal variable reference

Integer array 2 words Code 260, LOCal array reference
Float array 2 words Code 261, LOCal array reference
String array 4 words Code 262, LOCal 256 (max string length?)

Code 263, LOCal array reference

Turbo
Integer 2 words Code 101 or 126, LOCal variable reference
Float 2 words Code 102, LOCal variable reference
String 4 words Code 55, 100 (max string length?)

Code 103 or 107 LOCal variable reference

Integer array 2 words Code 260, LOCal array reference
Float array 2 words Code 261,,125? LOCal array reference
String array 4 words Code 262, LOCal 256 (max string length?)

Code 263, LOCal array reference

11

Calling Procedures and Functions

After the parameters (if any) have been placed on the stack.
SuperCharge 2 Words Code 100, A6 offset

Turbo 3 Words Code 99, Long A6 offset (don’t know what’s different to 100)
Turbo 3 Words Code 100, Long A6 offset

In-bedded DATA statements

The contents of DATA lines are not in-bedded in the codec BASIC program where they belong, But
inserted in the initialization area before the main part of the BASIC program.

The end of the DATA being marked with a $8300 for SuperCharge, and $8001 for TurboCharge.

Decoding the DATA is as follows -

SuperCharge
If the first word is less then $7FFF, Then it’s a string in the normal QDOS fashion of a length word
followed by the characters of the string.

If the first word is exactly $7FFF, Then it’s an integer in the next word.

If the first word is $8000 and above, Then its a float.
Do a 2’s complement (invert all bits and add 1) to the word.
This is the first two bytes of the float. And the next two words are the rest of the float.

TurboCharge
If the first word is less then $7FFF, Then it’s a string in the normal QDOS fashion of a length word
followed by the characters of the string

If the first word is $8000 and above, Then its a number.
Do a 2’s complement (invert all bits and add 1) to the word
If the result is less than, or equal to $FFF, Then it’s a float. In which case, subtract $1BB8

from this result. And this is the first two bytes of the float. And the next two words
are the rest of the float.

If the result is greater than $FFF, Then it’s an integer.

If the first word is exactly $7FFF, Then it’s part of a T_CONFIG. In which case, read the next word,
which is a normal integer.

12

GLOBAL and EXTERNAL variables

Global variable and procedures are defined in the variables initialization as normal.

External variables do not appear in the variable initialization (but function parameters do).

EXTERNAL/GLOBAL definition block in a compiled program

Start 2 words Go To(160), A6 offset to just past end of definition block
1 word code 191 Marks start of individual entries

For each Global or External definition
1 word The definition number. Followed by either a word of zero,

or a byte giving the length of a definition name, followed by
the bytes of the name padded out to a word boundary.

Then for each entry in the definition
2 words 1st word is a type code, 2nd word is a variable/proc reference
repeats....

1 word A zero marks the end of the definition

At the end of all the definitions
4 words $FFFF, $0000, $4EAE, $8218 This marks the end of the

definitions

Decoding the type word
The type word defines the type of the entry in the definition

Bits 0 to 4 Entry type 1 = string
2 = float
4 = integer
8 = Procedure
16 = Function

Bit 5 Set for an array
Bit 6 Set for a parameter to a proc/fun

Bits 9 to 11 Number of array dimensions

Example - $0422 (%0000 0100 0010 0010) This is a float array with 2 dimensions y(0,0)

$0014(%0000 0000 0001 0100) This is an integer function
$0261(%0000 0010 0110 0001) and this is a string parameter for the function

note, it is defined as a single dimension array
which is a normal string in a compiled program

13

Threaded and Inline code
Compiled programs are usually generated in Threaded code. However sections of the code can be
generated in Inline mode, where instead of having the usual coded version of the original
SuperBASIC program stored, you have machine code routines buried inside the coded version of
the original SuperBASIC program.

The original SuperBASIC has these lines surrounded by a REMark +, and a REMark -

At the time of writing this, I have only come across one SuperCharged program that uses Inline
code. And at this time I have not thought of a method of automatically decoding this Inline code
back into SuperBASIC.

I have added to DisCharge, limited support for Inline code. When you decompile a program using
Inline code, it will generate code something like.

44 REMark +
45 REMark ** Inline code line **
46 REMark ** Inline code line **
47 REMark ** Inline code line **
48 REMark ** Inline code line **
49 REMark ** Inline code line **
50 REMark ** Inline code line **
51 REMark -

Where ** Inline code line ** means that the decompiler found a program line of Inline code.

This code is made from joining up the code routines that are normally called separately. However
there is nothing separating the code segments, so the decompiler does not know how to identify, and
separate the routines.

Hence this code will need to be decompiled by hand.

Format of the Inline code.
I only have the one program that uses Inline code, and this is how it’s laid out in this compiled
program, which has line numbers.

The REMark + line start with a normal code 0 word, followed by a line number word, then an A6
offset word pointing to the start of the inline machine code.

Each program line of the ‘inline’ code starts with the word $3C3C, followed by a line number word,
then the machine code of the program line.

This continues until the REMark - line is reached, which starts with the word $3C3C, followed by
a line number word, then a long word ‘jump to subroutine relative to A6’ starting $4EAExxxx. The
second word may vary between different versions of the original compiler.

You then revert back to the normal compiled code 0 word, followed by a line number word.

The code routines that are joined together may not be exactly as as they appear in the library
routines, but close enough to be able to identify them.

14

Variable references and data that were in the coded version of the SuperBASIC program are
handled slightly differently.

Variable references are handled by setting a pointer to the variable, then moving the value either
onto, or off of, the stack pointed to by A1.

246E88BC movea.l -$7744(a6),a2 point at ‘var88BC’

Note that the SuperBASIC variable reference is the second word of the ‘movea.l’ instruction. In this
case the ‘88BC’

3392E800 move.w (a2),$00(a1,a6.l) get value onto the stack

34B1E800 move.w $00(a1,a6.l),(a2) set variable from the stack

Note that the format of the instruction may change between different versions of the compiler used,
but it always involves moving between the A1 stack, and A2.

15

