Building a Free Pascal Cross Compiler
for the Sinclair QL

Norman Dunbar

5th April 2021

1 Introduction

I already had the Free Pascal Compiler (FPC) installed on my Linux laptop, however, I
don’t use it that often — I'm not very good at remembering how to write Pascal code —
so I decided that for this experiment in getting the bare bones of the Sinclair QL version
of the Free Pascal Compiler I would set up a brand spanking new VM running the same
Linux version as my laptop. This is Linux Mint 20.1, the 64 bit version.

The process of setting up the VM will not be discussed here, normally I would have used
VirtualBox but as I had just done my 10 yearly wipe and refresh of the laptop, I hadn’t
yet installed it and I wanted to try out the 1ibVirt system using QEMU and the kernel’s
KVM stuff!.

The upshot of all this is, I had made things a little more complicated than they needed
to be, but that’s how I wanted it. If I messed things up really badly, I could easily wipe
the VM and start again with little or no problem, whereas if I tried to do everything on
the laptop, and messed up, I might need to be sorting things out for a while to get back
to where I was. Experiments don’t always work out fine!

1.1 Code Conventions

1.1.1 Line Numbers and Continuations

In the listings which follow, lines will be numbered. Hopefully you will see that the
numbers are outside of the code block in the document. You don’t have to type in the
numbers!

Also, keep an eye out for long lines which have wrapped around. They will not have
line numbers on the continuation lines and those will be indented to show that they are
continued from above. Like this:

echo "This is a short line."

echo "This is a long line of what should be code and it is
all on a single line, but has wrapped around."

echo "This is another short line."

Lines of output from various commands will be shows thus:

Hello World!

!That’s a technical term.

There will not be any line numbers, unless absolutely necessary, and long lines will be
split and indented as before.

1.1.2 Privileges

Unless otherwise noted, all commands will be executed as my local user, norman, and
not as root. I may need to obtain root privileges from time to time, and to do that,
I'll prefix the appropriate commands with sudo rather than logging in as the root user.
When using sudo, you are initially prompted for a password and that password will be
cached for a short period of time. During this time, any other sudo commands will not
prompt.

1.1.3 Free Pascal Compiler Versions

As I worked on this document, there were many changes made to the sources of the
Free Pascal Compiler, this included the occasional version number change. I started at
version 3.2.0 and at some point, it had risen to 3.3.1. To avoid confusion, I have avoided
hard coding the version numbers into paths where it is included. Those file and directory
names will be noted as “n.n.n” regardless of the version in question.

1.2 Building the Development VM

The plan of action, after installing the VM and Linux, is to:

e Install any development software required.

Install the Free Pascal Compiler for Linux 64 bit.
Install the FPC Source Code.

Install and build the required assembler, vasm.

Install and build the required linker, vlink.
e Build and install the QL version of FPC.

That would, hopefully, give me a working cross compiler so that I could try and write
QL programs, compile them under Linux, copy them to my QL then test them. Easy
stuff, no? My own QL system is Marcel’s excellent QPC so I'm able to run the cross
compiled programs without any problems. However, if you are using an actual QL, then
you may need to compile the Pascal programs using the option to add an XTcc trailer
record, and use my little XTcc_bin utility to convert the files to executable on the QL.

As I worked through the experiment, it became obvious that some work would be needed
on the existing, brief, system Unit for the QL, so I will also need to be able to edit and
recompile the Sinclair QL Runtime Library (RTL) for FPC.

© 00 N O Ui Wi

—_ = =
N = O

2 Development Software

Once the VM is created and Linux Mint installed, we need to install the software tools
and packages which will allow us the ability to build the cross compiler.

2.1 Installing the Software

The following software is the minimum required to build the cross compiler and build
Pascal programs for the QL:

e Subversion; the version control system used by the FPC developers. We need this
to be able to download the source code for the compiler, and to keep the software
up to date. We could avoid this step and just download a zip file, if necessary.
Subversion comes in handy when changing the RTL as it allows a patch kit to be
created to update the source code for others to use.

o Build-essential; a package on Mint that installs the various compiler tools and
libraries necessary to compile stuff!.

e The ssh server; to allow me to connect a terminal session from my laptop to the
VM to do development work, and to copy down compiled programs.

e (it; which is not strictly necessary, but I use it myself and I wanted it installed,
just in case. Feel free to leave it off if you don’t use it.

! Another technical term!

© 00 J O Ui W N -

As I mentioned, I need to install and enable the ssh server, so that it runs now, and at
startup:

I need the current IP address of the VM to allow me to use scp to copy the file to my
laptop from the VM, and upload it to QPC:

The above list sets up the VM ready to compile code. In addition to the above, I also
need:

e To install FPC for the Linux host; the compiler is used to compile a Sinclair QL
cross compiler version of itself, so it is required to be present.

e To build the QL version, we also need to install the source code for the compiler.

ot

=W N

=W N

3 Installing the Host Compiler

The “host” is my Linux VM. It requires that a version of FPC be installed to compile and
run programs for Linux 64 bit systems. Once installed it will be used to build the QL
specific version of FPC that will run on the host, but create executables for the “target”,
the QL. Cross compiling can get a little bit confusing at times.

3.1 Download FPC

Point your favourite browser at https://www.freepascal.org/download.html and on that
page, scroll down to where you find your particular system. Mine is X86-64 Linux, so I
clicked that link.

On the next page, select a mirror — I used Source Forge — and click the link. If you
click on one of the other mirrors, you get different options. Source Forge is amus-
ing in that you have to choose your required version, again. There are quite a few
and some are pre-build cross compilers, so be careful in what you choose. I required
fpc-n.n.n-x86_64-1linux.tar and that just happens to be the version that Source Forge
decided was ideal for me and selected it as the “Download Latest Version” option, right
at the top in a big green box.

Let the download run, it’s about 85 Mb, and when completed, make a note of where you
saved it, then in a file explorer session, navigate to the downloaded file, and extract it.
Once extracted, it’s a simple case of making sure that the file install.sh is executable,
and running it. The extraction process is as follows:

3.2 Installing FPC

6

https://www.freepascal.org/download.html

The first prompt from the installer is for a location to install FPC and the RTL. This
location should be on your path which invariably means that you will need root privileges,
which is why we need use sudo to run the installer. I chose /usr/local as my install
location, as follows:

You may wish to make a note of those locations for the various configuration files, in case
you need or want to change things. They should be fine for the host system — I didn’t
have to change mine.

After installing the compiler, we are then prompted to install the documentation and
demonstration files. I chose not to, but if you wish to do so:

7

N OO W N

3.3 Testing the Host Compiler

We now need to make sure that the compiler works. I created myself a SourceCode
directory tree for all my source code, then changed into it ready for action:

Create the following hello.pp file:

Compile the test code:
Looks good, now test it:

So far the host compiler is looking good and can at least compile a simple Pascal program.
We are ready to use FPC to rebuild itself as a Sinclair QL cross compiler.

oo

4 Installing the Compiler Source Code

Once we have the host compiler working, we can get hold of the compiler’s own source
code and use the host to build a cross compiler for the Sinclair QL. The first step is to
grab the source code and to do this we need to use subversion.

These commands will create a new directory, SourceCode/fpc, then checkout the main
trunk of the FPC source code into the new directory.

0 O U W N

ST W N~

5 Building the Cross Compiler

5.1 Build the Assembler and Linker

We need a certified assembler and a linker first. We must use the vasm assembler and
the vlink linker, or things won’t work. The two URLs where the source code for these
utilities is to be found, are:

e http://sun.hasenbraten.de/vasm/index.php?view=relsrc
e http://sun.hasenbraten.de/vlink/index.php?view=relsrc

You need to get the latest sources and vasm version 1.8 or higher, and vlink version 0.16¢
are required.

In Linux, I was able to use the wget command, but it’s a simple task to open the two
URLs above, and click the link to download the source files. However you do it, it’s
probably wise to save the files into your SourceCode directory along with all the other
source we are building.

Now we need to extract and compile both utilities and copy the executable into a location
on the path, first vasm:

The build process will create an assembler binary named vasmm68k_std.

Next, the vlink linker:

http://sun.hasenbraten.de/vasm/index.php?view=relsrc
http://sun.hasenbraten.de/vlink/index.php?view=relsrc

N O U= W N S Tk W N~

© 00 O O = W N~

— =
=)

5.2 Rename the Assembler and Linker

After this, both files must be either renamed or sym-linked (on Linux) as follows. If you
are on Windows then a rename should be sufficient.

e The assembler must be named m68k-sinclairql-vasmm68k_std.

e The linker must be named m68k-sinclairql-vlink.

5.3 Build the Sinclair QL Cross Compiler

Now we can build and install the cross compiler. I'm creating a new directory, named
bin, in my home directory, for the installation. This will need to be added to my $PATH'
at some point:

1On Linux Mint, and probably Ubuntu as well, when using the bash shell, if a user’s $HOME directory
includes a directory named bin, it is automatically added to $PATH at login time.

11

12
13
14
15
16
17
18

19

= W N

ot

This will create a file named /home/norman/bin/lib/fpc/n.n.n/ppcross68k, but I
prefer to call mine fpc-ql, so:

I've got a sym-link set up but on Windows you can easily copy or rename it. Now we

o
&
B
-+
€]
n
=+
—-
i

We can see that we have a compiler for the M68K CPU.

5.4 Create the Configuration File

We need to create a configuration file for the cross compiler.

You may have to create the etc directory, I did. A file named fpc.cfg is required with
the following content:

—_

2

wW N

0 3 O Ut i~

=~ W N~

© 00~ O Ot

10

You will note the use of place markers for the installation directories. As my installation
directory was the bin directory in my home folder, my file looks like this:

If you are only interested in building Pascal programs for an actual QL, and have no
intention of developing anything for Windows or Linux, then this config file is an excellent
option:

You may have noticed that I added the -WQxtcc option? This is the option that tells the
cross compiler to add an XTcc trailer record to the end of the compiled binary, this holds
the data space required by the program. You can use this on a normal QL to convert
the file into an executable?. The default is to write a special header at the start of the
file and most/all the QL emulators understand this and can execute the file directly. If
you are running on an emulator, like me, then omit the -WQxtcc option.

5.5 Building Your First QL Program

Now, test the build. In the following, I've used the -Tsinclairql option to tell the
compiler to compile for a QL. If you added the option to the config file, there’s no need
to use it here.

2Using my own excellent(!) utility, Xtcc_bin. Issue 6 of my eMagazine has all the details.

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_6

You can safely ignore the warning. On Linux it’s easy to determine if the correct file has
been created provided the option to use an XTcc trailer was specified in the config file,
or at compile time with the -WQxtcc option:

The executable is hello.exe, it’'s a QDOS executable and since FPC version 3.3.1, the
job name is “Program” unless you give the code a “Program xxxx” statement in which
case the job name will be “xxxx”?. All we have to do now is get it over to a QL and try

it out.

30k, confusion! In FPC you do not have to give a program a name unlike standard Pascal, so the
“Program” line can be left out. This gives the QL executables a default program name of “Program”.
If you do include the “Program” line, the QL executable takes the supplied program name as the
job name. However, you can change the job name on the fly, if you wish, using the QL specific
functions SetQLJobName(), and retrieve the job name with GetQLJobName() which returns a string
or GetQLJobNamePtr() which returns a pointer.
See https://wiki.freepascal.org/Sinclair QL#Job Name for details.

https://wiki.freepascal.org/Sinclair_QL#Job_Name

6 Compiling QL Pascal programs

When writing your source code, standard Pascal requires that the first “executable” line
in the file be the Program ProgramName(...), however, FPC doesn’t require you to
have this line at all. On the QL, the executable’s job name will be determined from the
Program line. If one is present, the job name will be as per the given program name, if
that line is not present, the default job name will be “Program”. There are some special
QL functions that can be used to set or retrieve the job name. This may be useful if you
are writing a file processing task of some kind, and you wish to add the current filename
to the job’s name. You are limited to 48 characters maximum though, so don’t go too
overboard!

The functions are:

e Function SetQLJobName(const s: string): longint; This function sets the job’s
name from a Pascal string and returns the number of characters successfully set as
the Job name, or -1 if there was an error.

e Function GetQLJobName: string; This function returns the current job name as
a Pascal string, or empty string if there was an error.

e Function GetQLJobNamePtr: pointer; This function returns a pointer to the Job
name stored as a QL string (2 byte length + series of characters), or nil if there
was an error.

To compile a QL program, all you have to do is:

cd “/SourceCode/Pascal
fpc-ql -Tsinclairql hello.pp

Warning 22: Attributes of section .text were changed from r-x
- in Linker Script <1ink15795.res> to rwx- in hello.o.

As mentioned, if you added the -Tsinclairql option to the config file, you don’t have
to specify it here. I need to compile code for both Linux and the QL. I test my dodgy
Pascal code on Linux first to be sure it compiles and runs correctly, then I repeat the
operation for the QL. At least then I know that if it worked on Linux but doesn’t on the
QL, then it’s the QL RTL that’s most likely to be the cause.

You can safely ignore the warning about the attributes at the end of the compilation
output.

The executable file for the QL will be created as “hello.exe” and will have a built in file
header with details of the data space required unless you specified the -WQxtcc option

15

either on the command line or in the config file. There are two options which control
how the executable file for the QL gets it’s data space information:

e -WQghdr Set metadata to QDOS File Header style. A header record will be added

to the file and QPC or other emulators can use this to execute the file directly, even
from a dos_ device. This option is the default and doesn’t need to be specified.

e -WQxtcc Set metadata to XTcc style. This will be needed on an actual QL and you

will need a utility to convert the file to an executable.

To compile the example program, there are a number of options:

16

e fpc-ql hello.pp this assumes that the -Tsinclairqgl option is to be found in the

config file, if not, it will fail to compile. The executable will be created with header
details embedded into the executable file ready for use on various QL Emulators.

fpc-ql -WQghdr hello.pp This is exactly the same as the variant above, however,
it will override any -WQ option in the config file and force an embedded header to
be used.

fpc-ql -Tsinclairgl hello.pp this variant explicitly specifies that the file must
be compiled for the Sinclair QL and will overwrite any existing -T option in the
config file. The executable will be created with header details embedded into the
executable file ready for use on various QL Emulators.

fpc-ql -Tsinclairqgl -WQghdr hello.pp This is exactly the same as the variant
above, however, it will override any -WQ option in the config file and force an
embedded header to be used.

fpc-ql -WQxtcc hello.pp The executable will be created with an XTCC trailer
record holding dataspace details. This variant is suitable for use on an actual QL
after the executable has been processed by an XTcc utility.

fpc-ql -Tsinclairql -WQxtcc hello.pp This is exactly the same as the variant
above, however, it will override any -WQ option in the config file and force an XTCC
trailer record to be used.

7 Running Compiled Programs on the

QL

7.1 Programs Compiled with -WQqhdr

These programs are best suited to the various QL emulators which know about the
embedded header with the dataspace details. I use QPC and it copes happily with me
executing these programs directly from the dos_ drive. I don’t have to make any changes,
or somehow tell QPC that although the file is executing from a non-QL device, it still
works perfectly.

ex dosl_hello.exe

And that’s all there is to it! A 512 by 256 window will open and display the following:

Hello FPC World!
Press any key to exit.

7.2 Programs Compiled with -WQxtcc

The executable file which the cross compiler created can be copied over to a QL (or QPC
or other emulator) and converted into a proper QDOS executable. In my case I can use
my XTCC utility from my somewhat irregular Assembly Language eMagazine, Issue 6 —
available from My GitHub', to read the details and write out an executable file.

ex winl_source_xtcc_xtcc_bin,raml_hello.exe

The file, hello.exe is now ready to be executed.

ex raml_hello.exe

A 512 by 256 window will open and display the following:

Hello FPC World!
Press any key to exit.

Success!

Thttps://github.com/NormanDunbar /QLAssemblyLanguageMagazine /releases/tag/Issue 6

17

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_6
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_6

8 Amending the Run Time Library

The system unit lives in the run time library and is responsible for all the various startup
needs of a compiled Pascal program. It opens the standard files, sets the program name
and so forth. Sometimes it may be necessary to edit and recompile the RTL.

8.1 Editing Source Code

The source for the RTL for the QL, lives in the rt1/sinclairql directory which you will
find beneath the fpc directory created when you installed the source code previously. In
my case, SourceCode/fpc/rtl/sinclairql.

Files of interest here are:
e System.pp
e sysfile.inc
e sysdir.inc
e qdosfuncs.inc

e gdos.inc

8.2 Compiling the RTL
8.3 Installing the RTL
8.4 Creating a Patch File

8.5 Applying a Patch File

18

9 Building the Run Time Library

19

10 Amending QLUnit

20

11 Building QLUnit

21

	Introduction
	Code Conventions
	Line Numbers and Continuations
	Privileges
	Free Pascal Compiler Versions

	Building the Development VM

	Development Software
	Installing the Software

	Installing the Host Compiler
	Download FPC
	Installing FPC
	Testing the Host Compiler

	Installing the Compiler Source Code
	Building the Cross Compiler
	Build the Assembler and Linker
	Rename the Assembler and Linker
	Build the Sinclair QL Cross Compiler
	Create the Configuration File
	Building Your First QL Program

	Compiling QL Pascal programs
	Running Compiled Programs on the QL
	Programs Compiled with -WQqhdr
	Programs Compiled with -WQxtcc

	Amending the Run Time Library
	Editing Source Code
	Compiling the RTL
	Installing the RTL
	Creating a Patch File
	Applying a Patch File

	Building the Run Time Library
	Amending QLUnit
	Building QLUnit

