Code keys for De-Lib 17/01/2020

Code Additional = Description All Codes are in HEX

SRk ke ke sk Operators SRk ke ke sk

4A = Equal

4C <> Not equal

50 < Less than

4E > Greater than

54 <= Less than or equal
52 >= Greater than or equal
0A + Add

0C - Subtract

OE * Multiply

10 / Divide

42 & Join strings

3A && Bitwise AND

3C I Bitwise OR

3E AN Bitwise XOR

40 e Bitwise NOT

34 OR AsinIF (aORDb)
32 AND AsinIF (a AND b)
36 XOR

46 MOD

48 DIV Divide (integer)
38 NOT (float)

44 INSTR

30 A Raise to a power
56 == Almost equals

Fdkkkk A ctual values ##%**

8A [2 bytes] An actual integer to put on stack

88 [6 bytes] An actual (6 byte) floating point to put on stack

92 [4 bytes] An actual (4 byte) floating point to put on the stack
8C [undefined] An actual string to put on stack

¥%% Normal variables ***
D2,80,D4 [2 bytes] Get a variable (I don't know what the difference is)
78 [3 bytes] Get a Name list entry with a separator.
1st bye is separator
2nd word is variable reference
7E [3 bytes] Get a string slice (from an array)
1st byte is the number of indexes

2nd word is variable reference

D6, D8, 84 [2 bytes] Assign a variable

Rk g kR Arrays SRR Kk

6C [4 bytes] DIMention a integer array 1st byte is number of elements, 2nd word var ref
6A [3 bytes] DIMention a float array ~ 1st byte is number of elements, 2nd word var ref
6E [2 bytes] DIMention a string array 1st byte is number of elements, 2nd word var ref
86 [4 bytes] Get an array element (string) ? slice?

1st byte is a separator to go afterwards e.g. for a comma - x(3),
2nd byte is the number of indexes
3rd word is the variable reference

7A [3 bytes] Get an array element
1st byte is the number of the indexes (on stack)
2nd word is the variable reference

7C [3 bytes] Assign an array element
1st byte is index number
2nd word is the variable reference

68 [3 bytes] Assign an array element e.g. x$(y,3) or x$(y, 1 TO 10)
1st byte is number of indexes
2nd word is the variable reference

d%* Stack manipulation *****

14 Convert to a negative (float)
16 Duplicate the item that is on the top of the stack
66 [1 byte] Add a parameter separator to an item on the top of the stack

Like second byte of type word in QDOS
00=none 10=, 20=; 30=\ 40=! 50=TO 80=precede with #

BC [1 byte] Place a parameter separator on the stack. Codes as above

*¥xdk Keyword table commands *****

02 Precedes actual parameters of a command

*¥k%% Procedures and Functions *****

58 Precedes a namelist keyword function, or a Proc/Fun call
CE [4 bytes] Call a Proc/Fun

96 [2bytes] Call a keyword table entry, procedure or function

76 [undefined] Define a Proc/Fun. 1st byte is number of parameters, Repeating
words are the variables

9A [2 bytes] LOCal variable(integer)
98 [2 bytes] LOCal variable (float)
9C [2 bytes] LOCal variable (string)

72 [3 bytes] LOCal integer array 1st byte is number of indexes
70 [3 bytes] LOCal float array 1st byte is number of indexes
74 [3 bytes] LOCal string array 1st byte is number of indexes

5E RETurn/END DEF
5C [byte 02] End Define Function - (Don't know what the 02 is for, also seen 0)
60 RETurn a value on the stack

S s sfe sk sk FOR IOOPS Sk s sfe sk sk

9E

AO0

A4

A2

[2bytes]

[6 bytes]

[undefined]

[undefined]

Get FOR control variable

Used in mixed selections
1st word is the variable reference
2nd long is a pointer to just past the END FOR

Start the FOR

1st word is the variable reference

2nd long is a pointer to the statements

There are then 0 to the number of (selections-1) long words that point at
the selection number+1

There is then either -

For a simple FOR x=1TO 10

There is a long word that points at just past the END FOR

For a mixed FOR x=1,3,5,7 TO 10

There is a long word with the value 4, pointing to the statements

END FOR

1st word is the variable reference

2nd long is a pointer to the statements

There are then 0 to the number of (selections-1) long words that point at
the selection number+1

There is then a long word with the value 4

CC

[4 bytes]

offset pointer to ELSE or END IF

DO

[4 bytes]

pointer to ON..=..true long offset to true section

d%% Various QDOS functions ***

04
12
18
1A
1C
1E
20
22
24
26
28
2A
2C
2E

AE
B2
AC

B6
B8
BO

62
64

INT()
ABS()
COS()
SIN()
TAN()
COT()
ASIN()
ACOS()
ATAN()
ACOT()
SQRT()
LN()
LOG10()
EXP()

CODE()
CHR$()
LEN()

RESPR()
FILLS$()
EOF for embedded DATA statements

ERNUM
ERLIN

If 62 is followed by [8A] [2 bytes] [4A] then it's ERR_xx

*xd%k% Various QDOS commands *****

CA
A6

5A
BE

Co

A8

94

C8
B4

[4 bytes]
[4 bytes]
[3 bytes]

[4 bytes]

[4 bytes]

GOTO watch out for Def Proc/Fun & REPeat & I[F/THEN/ELSE
long word is offset to destination

GO SUB long word is offset to destination

STOP

READ 1st byte is D6 = integer, D8 = float, 84 = string
80 = array, data is READ as a variable and placed on
the stack. To be followed by an array assignment

2nd word variable reference

DATA Get value off the stack

RESTORE Long word pointer to DATA line + 6

WHEN ERRor Long word is an offset to middle of END WHEN
which is a B4, CONTINUE

RETRY Expects a word on the stack as a line number

CONTINUE

AA

96

[6 + (4 * number of options) + (6 * number of options)] ON..GOTO, ON..GOSUB
1st word is number of values
2nd long is pointer to next line
For the number of options there is a table of long words (options)
each is a pointer from the current position to another table of
GO TO/GO SUB's
Then for each option
word A6 for a GO SUB, or CA for a GO TO. Then for each option
a long offset
ON GO SUB ends in CA, long offset

[2 bytes] Name list command, Word is name list reference (increments in 8's)

