
2nd November 2018 Martin Head

DisCharge worked example

This is a worked example of decompiling a TurboCharged executable file. The program we are
going to use is Super Kit Merger by Emmanuel Verbeeck. The full program including the original
BASIC program is included in Super_Kit_Merger_V1_60.zip.

The first step is to Disassemble the compiled executable, skm_exe, in the Talent/Quanta Assembler
Workbench. You could use another disassembler, but you may have to make changes to the
DisCharge programs to cater for any differences in the generated disassembly. For the sake of this
example I have supplied a disassembly of the program for you, skm_exe_dmp.

The next step is to process this disassembly to identify the various subroutines generated by the
compiler when Super Kit Merger, was originally compiled with TurboCharge, So you will need to
use the program TurboProcessDump_bas.

Load TurboProcessDump_bas into QPC2 and edit lines 140 to 170

Now RUN this program.

This will create skm_exe_dmp_lib and skm_codes. skm_exe_dmp_lib is a modified copy of
skm_exe_dmp with the various routines separated and identified where possible. skm_codes is a
list of these routines that is used by the main decompiler program.

In this example you should not need to look at these files, but if some of the routines were not
identified by TurboProcessDump_bas, then you would need to use skm_exe_dmp_lib to try to
identify them by hand.

Looking at the screen shot above, note that Line number key code is $FFFF. This means that the
original BASIC program was compiled with the Omit Line No option. So there are no in-bedded
line numbers in the compiled program, and Discharge will need to generate it’s own line numbers. It
also means that DisCharge will have no idea of where the original program lines start and end. So it
will assume one program statement, per program line. So if the original program had three
statements on one line, DisCharge will generate three program lines.

The absence of line numbers mean that you will need to use the TurboDisCharge2_bas to do the
decompilation. TurboDisCharge1_bas is used for compiled programs that have in_bedded line
numbers.

The next step is to load TurboDischarge2_bas into QPC2, and edit lines 170,190,and 1020

Line 1020, sets a line number that the decompiler will pause at. After the decompilation listing stops
at this point, Press any key to continue one instruction/line at a time.

Setting it at 40000 is higher than any valid line number, so the decompilation should not pause at
all. Note, if you are decompiling a very large program with omitted line numbers, it is possible that
the decompiler will generate listings with line numbers greater than 32768.

Now RUN the program. After the run, use GO TO 1000 start the listing generation.

If you encounter any problems, or want to perform the listing generation again, then just GO TO
1000 again.

Just press ENTER at the filename prompt, and you should see the code listing scroll up the screen.

Enter GO TO 1000 again, and this time enter a file name at the prompt. A BASIC program will be
generated with a _bas extension.

Before trying to load this program into QPC2, First load it into a text editor and have a look for any
obvious problems that might upset SBASIC.

116 END_WHEN/CONTINUE this should be 116 END_WHEN

2044 EXIT 3396
2054 EXIT 2214 : END IF : END IF
2210 GO TO 1758
2674 EXIT 3326 : END IF
2750 EXIT 3326 : END IF
3316 NEXT 1146
3322 GO TO 2644
3392 GO TO 1146

The NEXT and EXIT’s along with the GO TO’s suggest REPeat loops.

Add the following lines

1145 REPeat loop1146
1757 REPeat loop1758
2643 REPeat loop2644

And edit the other lines to

2044 EXIT loop1146
2054 EXIT loop1758 : END IF : END IF
2210 END REPeat loop1758
2674 EXIT loop2644 : END IF
2750 EXIT loop2644 : END IF
3316 NEXT loop1146
3322 END REPeat loop2644
3392 END REPeat loop1146

There are some integer FOR loops, where the END FOR variable end with a %, but the
corresponding FOR variable does not have the % added .

Add a % onto the FOR variables in lines 1614, 1978, 2290, 2986, and 3326.

Now try loading the program into QPC2.

SMSQ/E complains about the syntax of line 2924

2924 PRINT#6,"30 LBYTES "" & var9294$ & "",adr"

This is confusion over single and double quotes, and should be

2924 PRINT#6,'30 LBYTES "' & var9294$ & '",adr'

If you look at the original program, the line was

2970 PRINT #6,'30 LBYTES "' & sortie$ & '",adr'

The program will now load into QPC2 without error.

Before trying to run the program. If you don’t have Turbo Toolkit loaded, you will have to REMark
out the WHEN_ERROR and RETRY_HERE commands.

There are also some CALL commands into the ROM that you might want to prevent happening.

When you RUN the program you will get an unknown procedure error on line 1938

1926 INPUT#3,
1938 var92A0$(var92B4%)

this should be

1926 INPUT#3,var92A0$(var92B4%)

DisCharge has problems with INPUT to an array element.

RUN again

If you do a side by side comparison with the original executable running in Qemulator, you will
notice enter the Full names of input LRESPR files they end up as two lines instead of one.

This is due to the decompiler not being able to keep track of the PRINT position of all possibly
open channels. So you will usually have to add a few print separators when PRINTing does not
come out quite correct.

Add a semicolon (;) onto the ends of lines 1926, 2336, and 3014

There may be one or two other little things that require attention, But the sake of this example you
have decompiled the executable back to a SuperBASIC program.

