710 IF MTEXT$(#3,key)<>""

720 NEXT main

730 ELSE

740 IF awnum=1

750 names$(position)=buffer$
760 ELSE

770 selection$(position)=buffer$
780 END IF

790 MAWITEM #3,key,,buffer$
800 bufferd=""

810 drag%=NOT(drag%)

820 SPRS #3,0

830 END IF

840 ELSE

850 IF MTEXT$(#3,key)c>nm

860 IF awnum=1

870 buffer$=names$(position)
880 names$(position)=""

890 ELSE

900 buffer$=selection$(position)
910 selection$(position)=""

920 END IF

930 MAWITEM #3,key,,""

940 drag%=NOT(drag%)

950 SPRS #3,1

960 ELSE

970 NEXT main

980 END IF

990 END IF

1000 END DEFine DRAG_DROP

1010 :

1020 DEFine PROCedure SHOWTIME
1030 LOCal number

1040 number=MAWNUM(#3\3)

1050 open_over #4,raml_showtime
1060 print #4,"In week "&number
1070
1080 print #4,selection$
1090 close #4

1100 END DEFine SHOWTIME

print #4,"the following players were

selected:"

The Extended Environ-
ment in SBASIC: Program-
ming with QPTR

Wolfgang Lenerz

This is the new Guide to using QPTR in Super-
BASIC. The purpose hereof is to enable you to
program the "Extended Environment” - so
called the (Pointer Environment) very easily
with the QPTR extensions (which you must
obtain seperately). Contrary to what a first
impression may let you believe, the Extended
Environment, and QPTR at the same time, are
not complicated or difficult, but just complex,

notably because there are so many new
concepts to assimilate at once. But it is actually
sufficient to know and respect its "philosophy”
to see - and understand - the logic behind it.

I sincerely hope this Guide will be useful to you.

Introduction

This is an explanation of the concepts and key-
words needed to program applications using the
QPTR SuperBASIC extensions. For some as-
pects, we will use examples derived from QPAC
ll it is thus hoped that the reader is familiar with
this software...

46

QL 7oday

Before starting on the course proper, some terms
might need an explanation:

The Extended Environment essentially is just a
new” method to interact with the user of an
application:

Interaction means, on the one hand, display of
information on the screen (in windows) and, on
the other hand, obtaining the user’s response to
this information (often, but not always, through a
‘pointer’). For example, a file copier displays infor-
mation (the name of files on a disk) and obtains
the user's response (ie. selecting which files to
copy). The Extended Environment (which Il ab-
breviate as EE from here on) can handle that
aspect of a program, but the rest of the program
will remain (nearly) unchanged: in the example just
used, it is still you, the programmer who will have
to program the copying operation itself.

An application is simple a program.

A window is said to be managed when it is part
of an application written specifically to take
advantage of the facilities offered by the EE:
QPAC I has managed windows, QUILL has
windows that are not managed.

The EE changes not only several aspects of the
QL's windowing system, but also the QL's
multitasking. Here, the concept of a window is
enlarged to mean not only the means through
which an application will communicate with the
user, but also the means to determine whether
an application will multitask or will be suspended.

The best way to understand that is to imagine
that, for the EE, all window are "stacked" on a pile
{one considers that an application has but one
main window). The window that is on top of the
pile is that which is entirely visible on the screen.
This window is said to be unlocked which means
that it will accept input if you type something in it
and if the mouse pointer is over it. If you now hit
CTRL + C, then the window on the top of the pile
will get transferred to the bottum of the pile, and
the window that was just under that one will be
on top of the pile. Now, if the pointer is in that
window anything you type (or any click of the
mouse) will be directed to that window and is
thus taken into account by the application to
which that window belongs. The window on top
of the pile will be called the upper window. The
other windows, which are underneath it, do not
accept keystrokes. It is then said that thay are
locked.

It is possible for two or more windows to be on
top of the pile at the same time, and to be visible
entirely (if they are small enough..). Both windows
will then be unlocked. However, if anything is
typed on the keyboard, the keystrokes thus
generated go only to the window in which one
can see the pointer

The concept of locked windows is important: An
application whose window is locked will be sus-
pended (ie. it stops working) until its window be-
comes unlocked IF this application either at-
tempts to write to the screen or is waiting for
user input. Example: You are working in Abacus,
and ask it to recalculate a large speadsheet. As
soon as Abacus starts to do that, you switch to
Basic. Abacus will continue to work on the
spreadsheet, until it has to display the recalcula-
ted sheet. Then it will stop cold, waiting for you
to switch back to it (thus unlocking it window).
Until then, Abacus is suspended.

The word pointer can have two meanings: first of
all it can mean the concept of a pointer as used
in all programmming languages, ie. a variable
pointing to something. Also, it can mean a poin-
ter (cursor) on the screen, moved about by the
mouse or cursor keys. One doesn't generally use
the word "cursor” because that normally ony
means a rectagular square (blinking or not),
whereas a pointer can have about any shape
you desire. Normally, it should be quite clear from
the context which meaning of the word pointer is
used, without any possibility of confusion.

The mouse pointer can be used to "hit” objects
or 'do” these objects: a "Hit" is either a click of
the left mouse button or tapping the space bar A
'Do’ is either a click with the right mouse button,
or tapping the ENTER key.

An application will have a main (or "primary’)
window through which it communicates with the
user Generally, this window will be divided into
"sub-windows’. These sub-windows are but sub-
divisions of the main window. Thus, in QPAC i, for
example, the primary window of the "Files’ menu
is the entire window visible. The part of the
window which displays the file names is a
sub-window,

Some sub-windows are a bit special in that they
can have ‘objects’ (such as the file names in the
QPAC |l files menu). The state of the objects can
change when hit or "done” and can even produce
an action. The sub-windows are called applica-
tion sub-windows.

QL 7oday

47

Programs using QPTR can also be compiled.
However, you have to use the QLiberation Soft-
ware's QLiberator for this, as the "Turbo” compiler
cannot cope with functions and commands
which return changed parameters (even thought
this is explicitly foreseen for Basic keywords). As
an importnt number of QPTR keywords use this
feature, programs written with them cannot be
compiled with "Turbo”.

A program written for the EE will most likely
follow the following procedure:

¢ Definition of window(s)

e Display of windows onscreen

¢ Waiting for user input

e Act on user input

e (perhaps) Re-define windows and display it
e Wait for user input etc..

This is in fact not far from ‘classical’ programming:
QUILL doesnt do anthing else than display its
windows, wait for user input, act on that etc..

Each of these stages wil be discussed. The
most difficult and important is the first stage, the
definition of the window,

Part One: Defining the Window

We wish of course, to define windows which are
managed. To this end, there are rules to be
obeyed, the definition must be made in a deter-
mined manner, which may seem complicated at
first. To obtain this global definition of the window,
there are several levels of definition through
which you will successively have to pass: You
must first define the main window, then the
different sub-windows and lists.

- LEVEL I: Definition of the primary window
A - Some new concepts

A certain number of new concepts must be set
out before we can examine the new keywords.

1) The primary window

The primary window of an application is terribly
important. Put simply, it is the first window to be
opened for an application - but it determines the
graphical aspect of the entire application. This is
why it is called the primary window: Primary not
only because it is the first to be opened, but also
because it primes all the others.

The primary window is paramount: your applica-
tion is not allowed to open any other window
outside the primay window!

2) The sub-windows

As we shall see, and as was already mentioned,
the primary window itself is generally broken
down into sub-windows. There are different kinds
of sub-windows, each doing it's own bit. NONE of
the sub-windows’ sizes may exceed the size of
the primary window, they must all be opened
within their primary. Even if you attempted
otherwise, the EE would not let you {)).

There are three types of sub-windows:

e The information sub_windows which just dis-
play some information, as their name suggests.

e The application sub-windows - they can be so
diverse that it is difficult to give a precise de-
scription.

e The menu sub-windows: these are a special
case of application sub-window, containing
"objects’”.

3) Menu items

In addition to sub-windows, primary windows may
also have ‘loose menu items” (sometimes also
called simply 'menu items’). These can change
state or produce an action when hit or "done’,
and, if the pointer moves over them, a border is
drawn around them.

To understand these three components, let's look
at the QPAC Il Files” menu:

We can see the first sub-window, containing the
file names, at a first glance. This is a menu sub-
window (the file names are its objects).

We also notice the menu items, such as F3: Com-
mands, F5 All etc...

The stripes” around the device name, are drawn
within an information sub-window. Likewise, the
data on the device (free sectors/ total sectors)
are displyed within an information sub-window:.

It should be noted that none of these sub-win-
dows is a "window” in the QL sense (ie. having its
own SCR or CON channel), even if they behave
like such. This can be seen from the "Channels’
menu: the "Files” menu has but one screen chan-
nel open..

4) Secondary windows

Sometimes it is necessary to have additional win-
dows which are true QL windows, with their own
channel. These will generally be secondary win-
dows.

48

QL 7oday

Secondary windows are defined, and behave,
exactly like primary windows (i.e. they have their
own sub-windows, menu items etc..) BUT these
secondary windows are all confined within the
primary window whose size they may not ex-
ceed. Simply put, an application may not display
anything outside its primary (but it is possible to
make the primay bigger if need be).

An example of a secondary window: in the QPAC
Il Files window, hit F3. This opens another win-
dow, which itself has menu items. This other win-
dow is a secondary window, it has its own CON_
channel, as you can see when checking through
"Channels’.

It is of course possible to open a new secondary
window within a first secondary window (no,
they're not called tertiary windows..). This can be
useful if you wish to have a cascade of menus: a
first menu leads to a second one, which in turn
leads to another efc.. (it is not, however
considered to be good programming style to use
too many cascading menus).

Whilst any secondary window is, of course,
limited to the size of the primary, a secondary
window within another secondary window is
NOT limited to the size of the first secondary
window - else, successive menus would have to
get progressively smaller!

In brief, an EE application has two kinds of win-
dows: one primary window (possibly with sub-
windows) and, possibly, one or several secon-
dary windows. Each may have its own loose
menu, and sub-windows.

The difference between a menu, whether it is a
loose menu or the objects in a menu sub-window
on the one hand, and a sub-window,on the other
hand, is the fact that clicking on an item in a
menu will lead to a result. This may just be to
select the item (e.g. F4 - view in the QPAC Il Files
menu) or lead to some kind of action eg. F3 in
the QPAC Il Files menu). Clicking on a sub-win-
dow in itself generally produces no results (there
is one exception to which we will come later)..

5] The working definition

To construct a primary window, you will need to
build up a "working definition” of this window.
Let's take an example with "normal” SuperBASIC.
You can open a window just by typing:
"OPEN#3,con_". You have then opened a window.
However, to really define this window, you would
then define its size and position
(WINDOWH3 xy.zp), its colours (border, paper, ink)
etc.. Thus you will build up an exact definition of
your window, with all your parameters.

Likewise, in the EE, you make a definition of the
window according to your parameters. Here,
however, this defintion, ie. the "working definition”
is more complex and it is compulsory - you
cannot do without it.

B - Making the Working Definition

The working definition of the primary window is
bullt up by the following function: MK_WDEF
(MaKe Working DEFinition).

workdef= MK_WDEF (wdef%,wattr%,wptr,ltab,
inftab,apptab)

"workdef” then becomes a pointer to the working
definition of the window. The parameters to this
function are as follows:

- * wdef% is an array containing the "physical
definition of the window,
In other words, it is a 4 element integer array
(DIM wdef%(3)). Its elements are, in this order:
- window x size
- window y size
- X position of pointer when the window is drawn
- y position of pointer when window is drawn.

The pointer position is given as the number
of pixels starting from the upper left hand
corner of the window, which is considered to
be at coordinates (0,0).

- % wattr¥% is an array containing the window
"attributes’. These "attributes” are simply the
following: window paper (& strip) colour, size
and colour of the window border and size of
the shadow beneath the window, in the fol-
lowing order:

- size of shadow
- size of border

- colour of border
- paper colour

So, there again, this is an integer array with 4
elements (DIM wattr%(3)).

The last three parameters should be clear to
anyone concerned. The "size of the shadow’
is given in pixels (but is multiplied by 2 by the
software, to have even numbers). The sha-
dow counts for the size of the window: On a
normal QL, you could not have a window
512x256 pixels wide plus a shadow, this
would make the window too large. A shadow
size of 2 is generally thought to be sufficient.

50

QL 7oday

- * wptr, ltab, inftab, apptab are level Il ‘pointers’
(ie. they are explained in level ll):

- wptr is a pointer {generally obtained by
SPRSP) towards a sprite definition.

- Itab is a pointer to a loose menu items list,
as returned by the MK_LIL function:
ltab=MK_LIL {level Il parameters).

- inftab is a pointer towards an information
sub-window list, as returned by the
MK_IWL function:
inftab=MK_IWL (level Il parameters).

- apptab is a pointer towards an application
sub-window list, as returned by the
MK_AWL function:
apptab=MK_AWL(Level | parameters).

Each of the last 4 pointers may be set to 0. In
this case, it is considered that the list to which it
points does not exist: if inftab = 0, there are no
information sub-windows.

ATTENTION: It is important to respect the types
of variables: if a variable is expected to be an
integer, or an integer array, the variable MUST be
of the correct type. Else, at best, the function in
which it is used will give up with an error, at worst
very bizzarre things may happen..

We'll continue with level I| functions in the next
instalment of this series.

Sinclair QL CSYNC Inverter

Marcel Flipse

The QL cannot be connected g®
to a CGA monitor directly. This §
is because the QL has an
active-low Csync pin. A CGA &
monitor expects an active-high g
signal. This document shows [
how to make a very little circuit
board, which inverts the Csync
pin. No additional power supply
is needed. The PCB is small
enough to fit inside a DB-9 connector.

The circuit is straightforward. The Csync signal is
fed through a single gate NAND, which acts as
the inverter The NAND gate is powered by the
Csync signal itself. Energy is stored in a 10uF tan-
talum capacitor, to buffer the time the Csync

TRIGGER

Hiden

Hopa

Falling

Source

CHI

tade

Coupling

Here you can see the ‘original’ Csync signal,
measured directly at the 8-pin DIN connector
at the rear of the QL.

Here are some pictures of the cable.

signal is low. A 100 ohm resistor is added to limit
the inrush current during power-up. Some
additional resistors and SOT-23 transient
suppressors are added for extra protection of
the QL.

Tek A @

Tue s
S

M Pug 13008s TRIGGER

Siden

Shope

ﬂ+ Faling

Fdda
Horrnal

Coupling

S8 CEfft S8 § SR TR L € B Taf S Sl € 48 RS 6 £ Ltk

Inverted signal

QL Today

51

SMSQ/E machine you will be
perfectly happy with either The
Q60 is a great choice for
someone who just wants the
best possible QL system or a
QL and Linux, especially if you
dislike Windows.

By the time you read this re-

the entire first production run of
Q60s and planning if not al-
ready selling the next run. With
a machine of this calibre and
with the dedication of people
ke Dennis Smith and Derek
Stewart and the full support of
designer Peter Graf, | am 100%
convinced this machine will be

a certain success, it really de-
serves to be. | have no hesita-
tion in recommending this com-
puter - every Qler should
have one! If I'd had enough
money to hand when it came
to the time to hand it back, fd
have bought this machine with-
out hesitation.

view, D&D will have sold out

Programming with QPTR
- Part 2

Wolfgang Lenerz

Continuing on from last time’'s instalment, here is
the new part of the series on how to use QPTR.
As usual, any comments are welcome.

Il - LEVEL Il Definition of the lists and sprites

If you want a window to look at least somewhat
interesting, you will have to dress it up a bit - so
the Level ll pointers should not all be 0, but should,
indeed, point to something. This is what is done
by the level Il functions: Level Il defines the (poin-
ter and other) sprites and sub-window lists.

A - The Sprites: "wptr’

Contrary to games computers, here a "Sprite” is
just a kind of image visible on the screen, which is
not "independently animated’. The most typical
example would of course be the mouse pointer.
This is a sprite, directed over the screen by a
mouse or the cursor keys. it can be an arrow, or a
cross (as in FiFi) or aimost anything. A sprite can
also be an image that is not mobile - once it is
drawn it remains where it is. The mouse pointer
sprite is actually exceptional in that it can move
around the screen. For example of a more normal
sprite, the icon used to make a window move
around the screen is, in itself, a sprite (when hit,
the pointer changes to that sprite).

So. the pointer used by the application is a sprite.
Each primary and secondary window can have its
own sprite - as can application sub-windows. In
QD, the sprite is in the shape of a cursor (blinking
or not), in Disktool, it is in the shape of a disk, in
FiFi it has the shape of a cross etc.. You will
notice that the pointer sprite "looses’ its specific
shape as soon as it leaves an application’s prima-
ry window: as soon as you put the pointer over
another application, it takes the shape given to it

by that application - provided, of course, that the
application has managed windows and is un-
locked (of course, several applications may have
the same pointer sprite). The pointer over an
unmanaged and unlocked window is either an
arrow or a 'K’, depending on whether or not the
application is waiting for a keystroke. Locked
windows always have another default pointer, a
padiock. One cannot change these default
sprites.

If each application can have its own sprite as
pointer, it means that each application must define
this sprite. If it doesn't (wptr=0) a pointer by
default will be used, ie. the famous little arrow.

The sprite definition is built in an area of memory
which must previously have been reserved by the
RESPR or ALCHP {(if you have Toolkit Il) functions.
wptr is then simply the address of this memory
area:

wptr=ALCHP(size) Or wptr=RESPR(size)

Now it "only” remains to find out how much me-
mory you should reserve (this is not a fixed
amount, it varies from sprite to sprite) - and then
you have to fill the memory area with the data for
the sprite you wish to have.

The size of this memory area depends strictly on
the size of the sprite: a small sprite will need less
memory than a large sprite - which seems quite
logical. For the time being, sprites are limited to
64 pixels in each direction. This may seem small,
but is actually not bad.

Sprites are ‘printed’ to the screen in a similar way
to characters, i.e. imagine a grid of columns and
rows. Each element, corresponding to one pixel
on the screen, can be either on or off - but here,
you can not only determine whether the pixel is
on or off, but also in what colour is should be ‘on’.

The size of the sprite thus depends on the
number of columns and rows. Suppose we want

QL Today

41

to define a sprites in a 10 by 10 grid (10 lines with
10 rows - 10x10 pixels). To define the sprite, we
read these rows and columns into an array. The
array will be a normal SuperBasic string array,
which, with a great leap of imagination, we shall
call "sprite$” in the examples. For a 10 by 10
sprite, this array must be DIMensioned as follows:

DIM sprite$(9,10) or more generally:

DIM sprite$(rows-1,columns)

where rows and columns are the number of lines
and columns respectively. The ‘rows-1" is be-
cause the first dimension of a sprite is sprite$(0).
Thus, by using DIM sprite$(rows-1,columns) we do
get an array with the required number of lines and
columns.

That stil doesn't tell us what value the 'size’
should be. This can be obtained with the SPRSP
function (SPrite Reserve SPace), which is used as
follows:

size= SPRSP (columns, rows)

where, again, rows and columns are the number
of columns and lines. Note the reverse order of
the parameters: columns first, rows second (this is
the other way round in the DIM statement).

So, attention:

* do not state SPRSP (rows, columns), nor
SPRSP (columns, rows-1) - it's (columns, rows)!.

* you must double the number of columns if the
sprite is a mode 8 sprite, because, indeed, each
pixel is twice as large in that mode...

Thus, to reserve sufficient memory, you should
proceed as follows:

size= SPRSP (columns,rows):
address= RESPR (size)

or:
address= RESPR (SPRSP(columns,rows))

to save on a variable (of course, RESPR can be
replaced by ALCHP).

Once enough memory is reserved, the sprite
needs to be defined. This is most easily obtained
by using the SPSET (SPrite SET) command:

SPSET address, ori_x, ori_y, mode, sprite$

- % address is the address obtained by the
RESPR, as mentioned above;

- % ori_x and ori_y are the x and y ‘origins’
within the sprite. It may seem curious that a
sprite has origins, as the sprite (if used as a
pointer), may freely move about the screen
and thus its origin changes every time.
Actually. these are the origins within the
sprite: A sprite can be quite large, but there
must be one point as of which you consider
that the sprite is inside of, say, an item or a
window: this is dertermined by the origin of
the sprite. Suppose you have a sprite in
shape of an arrow, you may wish that the
point of the arrow should be the origin of
the sprite, as most people will use that to
point to the vaious options.. So you set the
origin of the sprite to be the point of the
arrow.

- % mode is the colour mode in which the sprite
5 to be drawn: 4 or 8

- % gprite$ is the array we have defined
above (rows-1,columns).

Of course, this array must have been filed
in before using the SPSET command. This is
fortunately quite easy: Each row of the array
is made up as follows, using a white arrow
outlined in black as an example:

90 DATA ' a '
100 DATA ' awa !
120 DATA ' awwwa !
130 DATA 'awawawa'

140 DATA ' awa !
150 DATA ' awa !
160 DATA ' awa !
170 DATA ' awa !
180 DATA ' aaa !

Thus our array is filed in by a program such as
follows:

10 RESTORE 80

20 READ rows,columns

30 DIM sprite$(rows-1,columns)

40 FOR n=0 TO rows

50 READ mydata$

60 sprite$(n)=mydata$

70 END FOR n

80 DATA 8,7 : rem the number of rows & cols
90 DATA ' a !

100 DATA ' awa '

42

QL 7oday

120 DATA ' awwwa '
130 DATA 'awwwwwa'

140 DATA ' awa '
150 DATA ' awa '
160 DATA ' awa '
170 DATA ' awa '
180 DATA ' aaa !

In line 20, the number of rows and columns is read
in (the DATA in line 80). After that, the array is
DIMmed and the loop reads the strings from lines
90 to 180, which are used to fill in the array. There
only remains to explain the meaning of these
strings:

Let's start with line 90. Each character in this
string stands for ONE PIXEL. Line 90 is thus the
uppermost row of the sprite. It is composed of
three spaces, an 'a’ and again three spaces. Each
character has a special meaning: A space means
that this pixel will be "transparent™ it will let shine
through whatever lies beneath this pixel of the
sprite. An 'a’ means that the pixel will be black.
The letters for the other colours are:

a - black

u - blue *

r-red

m - magenta *

g - green

C-cyan*

y - yellow *

w - white

space - "transparent”

The colours marked with an asterisk (*') can only
be used for mode 8 sprites.

In our example, we can thus see that line 100 is
composed of two transparent pixels, a black
pixel, a white pixel, a black pixel and, again,
several transparent pixels. In fact, the black pixels
encase the white pixels. And so on for the other
lines - and now we have defined the sprite. As of
now, whenever we need the address of a sprite,
‘'wptr’ will be a valid address we can use.

More next time!

QL Logo

Dilwyn Jones

Some time ago the idea of finding a logo for the
QL was floated among the QL community. Vari-
ous suggestions were made and as far as | know
no real consensus was arrived at. Since then, I've
kept a page about this idea on my website and
there has been a slow but sure contribution of
ideas. Many of these might be suitable for
T-shirts, mouse mats, magazine logos, anything
which might help promote the QL. Some of the
ideas contributed are traditional QL symbols such
as the famliar red, white and black QL screen,
others are much more colourful and perhaps
more representative of the modern QL world.

My hope was that we could come up with
something everyone would associate with the
QL, in much the same way as the penguin symbol
is with Linux. As far as my original idea was
concerned, the best symbol of the QL is either a
QL picture, or the red and white startup screen,
or the letters 'QL", or the logo moulded on the
original QL case! So here is my first proposal. As
far as I'm concerned, anyone can use this to
make a QL T-shirt or whatever - it's a GIF file of
512x256 pixel dimensions just like the startup QL
screen, with the letters QL added in the chunky
QL screen fount. See figure 1.

Branko Badrlijka has sent me his suggestion, a
plain and simple QL monitor screen which makes
for a very small graphics file which is easily
resized without affecting detail.

He also suggests that a moderately thick black
border may aid appearance on certain back-
grounds.

14

QL Today

Paragraph word processor from F Lanciault.

BMP2PIC - file conversion program from
Phoebus Dokos, converts windows BMP files
into QL PIC files.

PhotoQL - Roberto Porro’s graphics conversion
program.

Pnm2picr (Q40) - available from the Q40 web
site, | don't know much about this program.
PIC2BMP - conversion program from Jerome

Grimbert.

Q-Colour. Colour picker and display system from
Woltgang Uhlig, includes the colour "skins’
extensions from Wolfgang Lenerz.

Sprite Editor - from Jerome Grimbert.

QL3D1 - from Mark Swift?

PSA conversion from George Gwilt, converts
partial save area files between Q40/Q60

mode 33 style graphics to mode 32 style
graphics.

PCBCad from Malcolm Lear
program.

Screen Snatcher - grab copies of the screen
picture, works on both traditional QL mode
4/8 graphics plus the new modes.

PicView — image file viewer for QL screens and
PIC files.

QCDEZE from Duncan Neithercutt is a CD-ROM
handler front end which uses GD2 graphics
on Q40/Q60 systems.

Pan and Scroll Tookit from Wolfgang Lenerz,
available on the Phoebus Dokos website.

QDT - the QL desktop system from Jim Hunkins.

Anyone know of any more? | may update this
article from time to time.

PCB/design

Programming with QPTR -

Pa r t 3 The Level Il pointers, continued
Wolfgang Lenerz

Again we continue our exploration of QPTR. You
may remember that to make a window under the
Extended Environment with the Sbasic QPTR
tookkit, you need a working definition, and that the
working definition is obtained by the function
MK_WDEF, thus:

workdef = MK_WDEF(wdef%,wattr%,wptr,ltab
,inftab,apptab)

Here, wtpr, ltab, inftab and apptab are 'level Il poin-
ters’ In the last instalment, we stopped at these
level Il pointers, and more specifically after having
explained 'wptr’, the pointer towards a sprite
definition, sprite which will be used in the window
for the mouse pointer We now know how to
define sprites.

So let's have a closer look at the other Level |l
pointers, and first ‘ltab’, the loose items table, or
pointer towards the loose menu itmes fist.

B- The "loose menu” items list
or: Of menus and items.

The concept of a ‘'menu’ probably does not need
much more explanation: a menu is just a set of op-
tions proposed to the user, who makes his choice
either by hitting a key corresponding to the op-
tion, or by clicking on the option with the mouse.

An “item’ of a menu is simply one of the choices
of that menu. In older programs (such as Quil), a
menu is displayed as a regular list, such as:

F1-=action 1

F2 = action 2
F3:=action 3
F4 = action 4

and so on. This kind of menu, whilst regular, is also
boring as it is generally bundled closely together
in the window, and it is difficult to show, at the
same time, other information in addition to the
menu choices. It would be nice to have the menu
items anywhere in the window, instead of having
them in a regular grid as shown above.

This is what a 'loose’ menu allows us to do. As
the term implies, the items of such a menu are
loose’, ie. can be anywhere in the window, they
don't have to be in a rectangular grid - but they
are still part of the same menu. The advantage is
that, whist the items are part of a regular
structure (and thus easily recognizable), they are
also placed where they can be used to best
effect. The structure of the menu is regular in that
the items will have the same appearance, but the
items do not appear one after the other in the
window. This is why it is a loose menu'.

When you define a loose menu for the window,
you will have to define what each menu item in
this menu is and does. Also, as the items are part
of the same menu, they wil have some
properties in common (their general appearance).
Some other properties will depend on each item

QL 7oday

47

(such as the key which actions each item - it
would be unfortunate if that were the same for
each item). You must determine all of that.

The common properties are those that define the
general aspect of the items: what colour is used
as the "paper’ or ‘ink’ to display the items, what
type of border they wil have, etc. Take for
example the QPAC2 °Files” window: the menu
choices offered (Command, View, All, ESC and so
on) have the same general aspect (same colour,
same ink, same paper, same border colour when
the pointer is in them etc..): they are all items of
the same loose menu. They all change similarly
when actioned or when the pointer moves over
them. So they all change “status™ in a similar
manner. Let's take a closer look, first, at item
"statuses’.

1 - ltem Statuses

Actually, loose menu items can have four different
statuses: The first status, is simply that of a
normal item which you can hit or do. It is said that
this item is "available’. The second status is
where, for any reason, you can neither "hit" nor
"do’ the item: the item is "unavailable” and cannot
produce any action. The third status is that of an
item over which the pointer is just hovering: this is
now the current item, and a border is drawn
around it — if you HIT or DO in the window, it will
be this item that is actioned. The last status is that
of a selected item, which is what happens when
you hit an item and it stays emphasized - such as
the View item in QPAC2-Files.

The definition of the four statuses will be common
to all items of a loose menu. This seems logical,
and avoids confusion: if red paper with black ink
meant that one item was selected, but meant that
another item was unavailable, this would confuse
the user to no end. Thus, the definition of the
colours used for these different statuses are the
same for all items. This provides the regularity
which enables the user to recognize loose menu
items instinctively as such.

To each status for the loose items thus corres-
pond ‘item atiributes”. The item attributes are
common to all items, and define the paper, border
and ink colours for each status.

Some other aspects, however may be different
for each item. In fact, it is as if each item had a
"window” with a content. Thus, for each item, you
should indicate what the size and position of its

"window” should be, and also its content and type
(text or sprite). You also define its "selection key”
and so on. The selection key is the key you hit to
have the corresponding item produce an action -
F4 for the "View" item in Qpac2.

2 - Making the loose menu items list

All the data for these items is grouped together in
a list called "loose menu items list” or "Loose ltems
List” (LIL). This list contains the common definitions
for all items, and the different information for each
item, one after the other To make this list, you
should use the function MK_LIL (MaKe Loose
Item List):

1tab = MK_LIL (lattr, lsiz%, lorg%, ljus%,
key$, 1ltyp%, lstr$, lspr, 1lblb, lpat)

ltab is the result of this function and is a pointer to
the loose items list. The parameters are as
follows:

- % lattr. This is an array of dimension DIM
lattr(3,3). It contains the item attributes.
These are the different colours/borders
which show the different statuses of the
items. As mentioned above, these are com-
mon to all items.

- lattr (0) (ie. lattr (0,0), lattr (01), lattar (0.2)
and lattr {(0.3)) contains, in this order, the size
and colour of the border of the current item,
in lattr {0,0) and lattr (0.1). lattr(0,2) and (0,3)
are unused.

- lattr(1) contains the paper and ink colours
for unavailable items in lattr {1,0) and lattr{1.1).
The two other elements of lattr (1) (ie. lattr
(12) and (1.3)) point to a ’blob" and a
‘pattern” (more of which later): in general,
though, they are left empty. For my part, |
don't think I've ever encountered a program
where they werent left empty ie. O (just
putting myself out on limb here, of course).

- Next, same thing for available itemslatir
20 et 21)

- Next, same thing for selected items (lattr

30 et 31)
- ¥ Isiz%, lorg%, and ljus% are integer arrays of
dimension DIM (n-1,1) where n is the number
of items in the menu (numbering starts at 0).
Thus, if you have three loose menu items,
you'll DIM the arrays DIM (2.1). Element O (ie
00) and (01) then contains information

48

QL 7oday

- X

about the first loose item (item 0) element 1
of the array contains information about
loose item nbr. 2 and so on. Just what the
information held in the elements is, is
explained here:

a) Isiz% contains the x and y sizes of
each item. One could say that these are the
size of the "window” for each menu item. It
is this window whose paper colour will
change when the item becomes selected.
Each element of this array contains, in
element (n,0) the X size of the window, and
in element {n1) the Y size of the window.

b) lorg% contains the "origin’, i.e. the x and
y position of this "window" for each item.
The position is given as the top left corner
of the "window’, in pixels, and relative to the
origin of the (primary or secondary) win-
dow containing the loose menu items. Each
element of this array contains, in element
(n,0) the X position of the window, and in
element (n1) the Y position of the window.

¢) lius% is the x/y justification of the
content of the item with respect 1o its "win-
dow” (ie. if the item contains a text, is the
text centered, is it flush to the left, or to the
right?) The "window” for a loose item can
be larger than its content, and then it is
important to state where the content should
be. For example, the F6 Sort" item in the
QPAC2 Files menu generally has a window
that is larger than its content, which can be
seen when you move the pointer over it:
the border around the item is larger than
the content of the item. With the ljus% para-
meter you indicate the number of pixels
from where the content of the item should
be drawn or printed, with respect to the top
left corner of the item's "window’. If this
parameter is O in any of the directions (x or
y). then the item will be centered in that
direction. Each element of this array con-
tains, in element (n0) the X justification of
the content of the window, and in element
(n1) the Y justiciation of the content of the
window.

Key$ is a string that contains the selection
key for the items. The selection key for an
item is the key to be pressed to hit/do the
item. KEY$ is one large string made up of
the selection keys for each item, so that
key$(0) = the selection key for item O,
key$(1) = the selection key for item 1 and
so on. Thus Key$ is composed as follows:

— X

key$=chr$(nl)&ehr$(n2)s. .. &ehr$(nx)
ie. exactly ONE keypress character per
item, until x items. The first is for the first
item, and so on. You can also write:

key$="A"g"BUE"C" efC..

If you do not wish an item to have the pos-
sibility to be hit/done with a keypress, use
CHR$(0) in the string for the keypress for
this item.

The character in question MUST be put in
UPPER CASE, (ie. either "A” instead of "a" or
CHR$(65) instead of CHR$(97). It doesn't
matter, later on, whether the uses presses
the key in upper of lower case, but here at
the definition stage, you MUST give it in
upper case.

There are also some special characters:

CHR$(1)= Hit= SPACE/left mouse button
{not to be used as selection key)

CHR$(2) = DO = ENTER/Rightmouse
button (not to be used as selection key)
CHR$(3) = Cancel = ESC

CHR$(4) = Help = F1

CHR$(5) = Move window = CTRL F4
CHR$(6) = Change size = CTRL F3
CHRS$(7) = Wake = CTRL F2

CHR$(8) = Sleep = CTRL F1

Thus, if you have an item the action of
which will move the window (it should then
have the standard sprite for that, as well),
the key$ for this item should be CHR$(5),
and thus, each time you hit the standard
CTRL-F4 combination to move the window,
this item will be actioned. You COULD con-
ceivably use any other key, but it really is
better if you use the standard keypresses
for these standard items!

All of these actions should be quite clear,
except perhaps wake and sleep: Ty CTRL
F1 and CTRL F2 in QPAC 2, and you will no-
tice that sleep puts the program to sleep as
a button, CTRL F2 wakes it up again, and
refreshes the menus.

Of course, you are not required to provide
for buttons, wake or even window move
events in your programs. If you do provide
for this, however, it is suggested that you
use the standard keypresses for the items
concerned.

ltyp% is an array of dimension DIM (n), ie.
one single element per item. This array de-

50

QL 7oday

-y X

termines the item type. There are four types:
0 - the item is a string

2= " " ""gprite
4= " " ""blob
6= " " ""pattern

Once the type is determined to be one of
the four above, you can then add nothing,
256, -256 or other negative numbers to it.
This changes the behaviour of the item:

- If nothing is added, different actions result
depending on whether the item is "hit" or is
"done’: when the item is "done’, the program
comes back from reading the pointer (as we
shall see later) but if you only "hit" the item,
the item will only change status beteween
selected and available afand back) and that
is all

- If you add 256, the item, even when it is
"hit”, will cause a return from the read poin-
ter loop, as if it was done. Thus, there is no
difference between hitting and doing (!).
Also, the item's status is immediately reset
to available.

- |f you add -256, a hit and a do are, again,
the same, but the item is not reset
immediately to available.

- You add other negative numbers, but only
to text items. If you do that, you will cause a
letter in the item (if it is a textl) to be
underlined automatically. This is covered in
more detail a bit later

Istr$ Isprblblpat are the arrays containing
the content of the items: Istr$ contains
strings, Ispr contains pointers to sprites, Iblb
points to pointers for blobs, Ipat points to
addresses for patterns (we shall see the
definition of blobs and patterns later - they
are very seldomly used for loose items).

Thus, if you have determined (by type%)
that the first item is a string, the first
element of Istr$ contains this string.

The arrays for these pointers are DIMmed
to DM (n), with Istr$ being dimmed to
(nmax_length_of_string) as is usual for
string arrays. They parsed - and must be
filed — for each corresponding item, as
referred to by the ltyp% of the item. Let's
suppose we want 3 items, the first one a
text item (HELP'), the second one a sprite
items (window move), the third again a text
item (ESC’) and the fourth another sprite.
We will then DIMension the Ityp% array for
four elements: DIM Ityp% (3). The contents
of ltyp% will be:

Ityp%(0)=0 (string)
Ityp%(1)=2 (sprite)
Ityp%(2)=0 (string)
ityp%(3)=2 (sprite)

We will then DIM Istr$(310), Ispr(3).bib(3)
and Ipat(3).

Istr$(0) will contain "HELP’, Istr$(2) STAYS
EMPTY (O string), Istr$(2) will be "ESC" and
Istr$(3).stays empty again.

Iblb and Ipat will remain empty (all elements
set to 0). Likewise, Ispr wil be empty
except for Ispr(1) and Ipsr(3) which will each
contain a pointer to a sprite (as explained in
the last instalment of this series).

The MK_LIL will automatically choose the
correct items from the correct arrays,
depending on the type of the item. This can
be one the worst problems with the QPTR
function, ie. fill in these arays wrongly..

Next time, we deal with automatic underlining of
a letter in a text item and information sub-
windows.

New Q-Word Game coming soon

Phoebus Dokus informed us about a new project from RWAP Via
Geoff Wicks and himself Here is a short description, and have a
look at the screen shots! As it is supposed to be ready for
XMas, that's the last chance to report about it before its release.
We hope to have a review for you as soon as the product is

use digital sound (as either a
CD sountrack on QPC-QXL or
SSS Q40/Q60/Amiga).
There is also planned support
for Q-Midi (Via the NET ports
on regular QL/QXL and Aurora
and in the future via serial on
all platforms or Standard Midi

released (hint, hint, for both RWAP and reviewers!)

Q-Word is a word puzzle
game that's a fusion between
Tetris, Scrabble and your Sun-
day newspaper’'s Find the hid-

QL 7oday

den words" puzzles. Q-Word
runs on hi-resolution, hi-colour
screens and its the first QL
commercial game of its kind to

UART on uQLx). Q-Word is
based on the Q-Typ dictionary,
therefore it practically can be
used in all languages a Q-Typ
dictionary exists. The follow-

51

that this happens because of the Spring Equinox
being set in March.

| hope that this is of some interest to someone!

Footnotes:

(1) To be absolutely correct -term wise-: "The One,
Holy, Orthodox Apostolic and Catholic Church”
(Orthodox: "The one that preaches the CORRECT
truth” from Orthos: Correct, Doxa: Belief, Rite and
Catholic: The one for ALL- from OLA-All, Everything)

as it is its full title - | am sure someone will have
some use for this trivial information:-)

(2) This was adopted by the -then- Hellenic Kingdom
a little after the Olympic Games due to some funny
circumstances with foreing correspondence from
the Games... ie the letter arriving at a date in say the
UK before it was sent :-) {'ve seen some of those in
my years working for Vlastos Philatelic Centre and it
was rather interesting as the first thought that
comes to mind is that Mr. Spock is right... Time Warp
IS possible :-)

Programming with QPTR -
Pa I’t 4 - The level Il pointers

Wolfgang Lenerz

Last time | left you with the promise to explain
automatic underlining of text items. So here it is:

3. Automatic underlining of a letter in a text item

You wil probably have noticed that in many ca-
ses a letter in a text loose menu item is under-
lined (generally, but not always the first letter).
This serves to indicate to the user that this letter
is the selecton key for this menu item. For an
example, you can look at the "Command’ menu in
the QPAC 2 Files program.

This of course is a very nice possibility and,
provided you have QPTR version 0.08 or higher,
you can also make use of this in your own pro-
grams.

As was mentioned last time, to obtain this auto-
matic underlining, you have to add something to
the type of the item. Remember, this works only
with text items - and you can only underline one
letter per item, of course.

In principle, to obtain automatic underlining, you
subtract 2 from the item type to underline the first
character of the item, 4 to underline the second
character in the item text, 6 for the third and so
on - in fact, you subtract twice the position of the
letter in the item text.

In practice, however, this will generate an error if
you use an underlined text item and add -256 to
it {to obtain a return even when the item is "hit’
and not "done’). The combination of a negative
item type and a negative addition to it makes
QPTR hiccup and refuse the item type.

Hence, to obtain underlining in a text item where
you also want to use the -256, you should use
the following item types:

254 = text with first letter underlined
252 = text with second letter underlined
250 = 3rd letter

and so on. | think you can see the progression.

If you want to use this possibility, though, you
should slightly change the RD_LOT procedure
that comes with QPTR (and the use of which is,
of course, highly recommended). | have made
these changes, and here you can find the
procedure as it stands now:

DEFine FuNetion RD_LOT (lattr,nitem)
1L0Cal count(3)
L0Cal item, ltyp, a$, 1sk$
10Cal ldef%(nitem-1,6), lptr(3,nitem-1)
LOCAL lstr$(nitem—1,85)
1sk$=""!
FOR item = 0 TO nitem-1
READ ldef%(item,0), ldef%(item,1)
READ 1ldef%(item,2), ldef%(item,3)
READ ldef%{item,4), ldef%(item,5)
READ a$: 1sk$=1sk$ & a$
READ 1typ
1def%(item,6)=1typ: 1typ=(1typ MOD 256)/2
IF 1typ>10 or ltyp<0:1ltyp=0
IF ltyp
READ 1ptr(ltyp,count(ltyp))
ELSE
READ 1str$(count(0))
END IF
count (1typ)=count(1typ)+1
END FOR item
RETurn MK_LIL(lattr, 1def%(T0, 0 TO 1),
1def%(T0, 2 TO 3), ldef%(T0,4 TO 5), 1sk$,
1def%(T0, 6), lstr$, lptr(1l), lptr(2),
1ptr(3))
END DEFine RD_ILOT

As you can see, the changes concern the
handling of ityp..

QL Joday

39

Ok, now the handling of menu items has no more
secrets for you.

C - The information subwindow definition list

As mentioned in previous instalments of this
series, menu items all have a certain action, the
do something. This is not true for “information
sub-windows™ - they are there only to DISPLAY
some sort of information, or used just to draw
borders within the window. If you look at the
"‘command” window in the QPAC2 Files program,
you can see that the window is divided into three
parts: the upper part, containing the name of the
window, a middle part framed by a green border
(it contains some loose menu items) and the
lower part with commands that are not included
within the border. This border was drawn with an
information sub-window, whose only function
here is to draw that border.

Contrary to loose menu items, information sub-
windows do not have to have common attri-
butes. They can be as disparate as you wish
them to be. Moreover, the content of each infor-
mation sub-window can be completely different,
not only from the content of other information
sub-windows, but even from another part of the
content of that same information sub-window.

Thus, when building the fist of the information
sub-windows, this list will be substantially different
to that for the loose menu items. In fact, we will
have several lists: one general master list, contain-
ing pointers to the information sub-windows, and
then one list per information sub-window.

Here with the level Il pointers, we are only con-
cerned with the master list, which contains infor-
mation for each sub-window, as well as pointers
to other information. The information contained in
this master list is concerned with the "physical
definition of each sub-window (size, origin et al).
The pointers to other information point to infor-
mation about the content of each sub-window.

To build this master fist, we use the following
function: MK_IWL (MaKe Information Sub-Win-
dow List)

inftab = MK_IWL (iwdef%, iwattr%, infolist)
where:

- * jwdef% is an array containing the physical
description of the windows. It has a dimen-
sion DIM (n.3) where n is the number of

information subwindows-1. For each array
element z, the array contents are:

- window x size (z.0)
- window vy size (z.1)
- window x origin (z,2)
= window vy origin (z.3)

The origins are the top left corner of the
window with respect to the top left of the
primary (or secondary) window containing
the information sub-window.

- % jwattr% is an array with the attributes of the
sub-windows. It is again an array DIM (n,3)
where n is the number of information
sub-windows -1. For each array element z,

the array contents are:

- Shadow "depth” - this is actually ignored
for information sub-windows and should be
left at 0.

- border size

- border colour

- paper colour

of the information sub-window, in that order,

infolist again is an array, but not an integer
array. It is an array of pointers towards the
lists containing the content of the informa-
tion sub-windows. These pointers are ob-
tained with a level I function (MK_IOL),
which we shall look at later. There is one
such list per information subwindow (or else
the pointer is left at Q).

D - The appilication_subwindow list.

Here again, this is a master list. It is, again, diffe-
rent from what has gone before. Actually, it con-
tains no other information than pointers towards
application sub-window definitions. Indeed, for
each application sub-window, we must establish
one definition. The pointers to these definitions
are united into this single master list.

Like information sub-windows, application sub-
windows do not necessarily have common
characteristics, they can be very different from
each other. This is why the master list contains
only these pointers to the application sub-win-
dow definitions.

To buid this list of application subwindows, we
shall use the function MK_AWL (MaKe Applica-
tion sub-Window List)

apptab = MK _AWL(appsubwin(n))

42

QL 7oday

appsubwin is an array containing the pointers to
the application sub-window defintions. For "n’
application sub-windows, you wil DIM this array
(n=1). It will be filled in with pointers supplied by
the MK_APPW function:

appsubwin(0)= MK_APPW (level III parameters)
appsubwin(1)= MK_APPW (levem III parameters)
etc...

If your window does not have any application
sub-windows, apptab is just O.

This finishes level Il - so let's continue right away
into level Il

The Level lll Pointers

The Level il commands and functions are used
to fil in the contents of the sub-windows (infor-
mation sub-windows and application sub-win-
dows). As was already mentioned, the content of
the primary window is made up of the loose
menu and the two types of sub-windows, its
contents are thus defined by them. The loose
menu is alraedy entirely defined in levels | & Il so
there now only remains to fill in the content of the
sub-windows.

A - The information sub-windows

The "physical’ definition (ie. size and origin) of
these windows was already given in Level ll. Here
in level lli, we only define what is in the sub-win-
dow. The content of such a subwindow is made
up of "objects’. An object may be anything: a
text, a sprite, a "pattern” or even a "blob’. For
example, if the sub-window is to contain the
words "Joe was ‘ere’, the object is the string "Joe
was ‘ere’, and it is an object of type text. We
have already met objects: the content of a loose
menu item can be a text, a sprite, a "blob” or a
"pattern” — this is, in fact the "object” of this loose
item. The same is true for information sub-win-
dows but an information sub-window can contain
several objects whereas a loose menu item can
only contain one object.

To use the above example, if the information sub-
window is supposed to contain the string "Joe
was ‘ere’, this text could be the object of the
sub-window. But | could also say that the word
"Joe’ is the first object of the information sub-win-
dow, the word "was" is object number 2, and "ere’
object number 3. The window thus would have
three text objects.

Agreed, in the above example it would not make
much sense to have three objects where one
would do the trick (and even so: see below).
However, you could have a text in front of or
next to a small sprite. Then you would have to
define two objects, one a text, the other a sprite.

By now, you will have guessed that you will need
to build up a list of information sub-window
objects. This is achieved with the function
MK_IOL (MaKe Information sub-window Objects
List):

listobjl = MK _IOL (isize%, iorg%, imod,
itype%, istrg$, ispr, iblb, ipat)

Here, listobjl, the result of the function, is a
pointer to the list of the objects.

The parameters to this function are not very
complicated (hereafter, 'n" is the total number of
objects in the information sub-window to put on
the list):

- % jsize% is an integer array of DIM isize%
(n-11). For each object x, isize% (x-1,0) is
the x-size and isize% (x-11) is the y-size of
this object (remember, numbering starts at
0).As usual, the sizes are given in pixels.

iorg% is an integer array of the same
DIMensions and contains the x and vy
origins of the object within the information
sub-window. (0,0) is the upper left hand of
the information sub-window.

- % jtype% is again an integer array but of
DIMension itype%{n-1). it contains informa-
tion on the type of object (same as for
loose menu items). Here again, you can
provide for automatic underlining of any
letter in a text object, by varying the type
parameter just like for loose items: (254=1st
character is underlined, 252 = 2nd character
is underlined and so on).

istr$, ispr iblb and ipat are string arrays
(istr$) or floating point number arrays (the
others) and they contain, just like for loose
items, the objects themselves, ie. the
strings (istr$), sprites (ispr) blobs (iblb) or
patterns (ipat). Each object can be of any
type.

-»* imod is a floating point array and contains

possible additional information on each
object:

— %

QL Joday

43

* If the object is a sprite, there is no additio-
nal information.

* I it is a blob, you must insert here the ad-
dress of a 'pattern’, and if it is a pattern,
give the address of a blob. Generally. in-
stead of refering to blobs and patterns, you
might consider using sprites.

* If the object is a text, you must give the
ink colour of the text, and the size of the
text (like in the CSIZE command). This data
is combined as follows:

Ink * 65536 + Csize_x * 256 + Csize_y.

Thus, if the object is to be a string which is
to be printed in red and big letters (ie ink=2,
csize=31), this becomes:

2 %65536 + 3 * 256 + 1 = 131841.

Thus for this object imod (x-1) would
contain 131841

It follows that if | want a string ("Joe was
‘ere’) where Joe would be printed in big red
letters, the rest in normal colours, | would
need two objects, one for "Joe’, the other
for the rest.

Strangely. in the parameter list, the imod
parameter precedes the type% parameter even
though it is the type% parameter that determines

what the additional information is — but that's the
way it is.

You should build up a list for each information
sub-window (unless the sub-window is empty -
then the pointer is Q).

You will thus write:
listobjl= MK_IOL(...)
listobj2= MK_IOL(...)

and so on, one for each sub-window. Once the
lists for the sub-window have been made, then
you must regroup the pointers to the list in
another array, as follows:

DIM infolist(n-1)

infolist(0)= listobjl
infolist(1)= listobj2

infolist{n-1)=1listobjn
The infolist array is then one of the parameters to

the MK_IWL function, which, as we have seen, is
a LEVEL Il function explained earlier,

OK that's it for today.

More in the next instalment, where we'll look at
some more level lll parameters.

TK2 on MAC QL Emulator

by Al Boehm

About how to install TK2 on the
MAC Q-mulator:

The Q-emuLator web page has changed. It is
now:
http://users.infoconex.com/daniele/q-emulator.html

However, that won't help with the MAC version
since that page is still being updated.

It's been some time since | ran Q-emuLator for
MAC and | am still looking for the paper manual
which is probably within 8 feet of where | am sit-
ting. As soon as ! find it, | will give you more defi-
nitive instructions. If | don't find it, | will email
Daniele for info.

As | recall, there are two steps to instaling the
TK2_ext.

1. Get a copy of TK2 (Tony Tebby has OKed free
use of TK2 on emulators). If you have a hard time
finding a copy of TK2, | will send you it via email.
It's not very large.

2. Use the the CONFIGURE menu to install the
copy and then save the configuration. | remem-
ber this was pretty straightforward but | do need
that manual to be exact.

Editor's comment: if YOU are using the latest
MAC QL Emulator, why not write about it? Other
readers may be very interested in your
experiences? | still get asked by Mac users and
can't refer to anything recent. Also, if you run
QPC under RealPC or Virtual PC on the Mac,
please tell us and others about it. Best, if you
use both and let us know the advantages and
disadvantages of each system,

44

QL 7oday

Programming with QPTR -
Pa I’t 5 - The level lll pointers

Wolfgang Lenerz

We finished the level Il pointers for information
subwindows last time. Now it's fime to explain
those for application subwindows:

B - Application subwindows

There are two kinds of application subwindows.
First, there are 'menu application subwindows’.
These contain elements which behave like loose
menu items: they can be selected, clicked and
actioned. A typical example would be the QPAC2
'Files” menu - the names of the files which are
displayed are part of an application subwindow:
they can be selected, and, if you DO them, they
produce an action. The 'menu items” of the menu
application subwindows are displayed in a grid.
This makes a nice contrast with the loose items.

The second type of application subwindow is the
"simple” application subwindow. This does not
contain a menu, in fact it is empty. Since it doesn't
contain anything, it is easier to define than a
menu application subwindow.

As we have seen for the LEVEL | definitions,
there is a list of application subwindows, com-
posed of pointers (addresses) to the subwindow
definitions. This thus must mean that application
subwindows also have definitions.. and, indeed,
there is one definition per application subwindow.
This definition is built with the MK_APPW (MaKe
APPIication sub-Window definition) function:

appsubwin = MK_APPW(awdef%, aattr%, aptr,
akey$, x_ctrldef, y_ctrldef, xoff%, yoff%,
X_spac, y_spac, xindex, yindex, linelist)

Phew!

Let's start by the easiest bit: The first four
parameters. The first two of these (i.e. awdef%
and aattr%) are identical to the first two parame-
ters of the MK_IWL function which was descri-
bed in the last instalment of this series. They de-
termine the ‘physical” definition of the window
(adet%) and the window attributes (aattr%) as
follows:

=% awdef% is an array containing the physical
description of the application subwindow. It

has a dimension DIM (3). The array contents
are:

- window x size (element Q)
- window y size (1)
- window x origin (2)
- window vy origin (3)

The origins are the top left corner of the
window with respect to the top left of the
primary (or secondary) window containing
the application subwindow.

- X aattr% is an array with the attributes of the
subwindows. It is again an array DIM (3). The
array contents are:

- Shadow "depth” - this is actually ignored
for application subwindows and should be
left at 0.

- border size

- border colour

- paper colour

of the application subwindow, in that order

X apir is the address of a pointer sprite for
this application subwindow. Thus, each ap-
plication subwindow may have a pointer
sprite that is different irom the main window
pointer sprite!

- % akey$ is the "selection key” of the applica-
tion subwindow - this is used to bring the
pointer directly into the application subwin-
dow. Moreover, if the application subwindow
IS a menu application subwindow with a scroll
bar hitting this key will bring the pointer:

- first to the centre of the application
sub-window. if the pointer was not already in
the application sub-window.

- then , if you hit it again, onto the scroll bar
(if any!)

- then back to the centre of the application
subwindow

- and again onto the scroll bar - and so on..

Just like for loose menu items, this selection
key must be passed to the MK_APPW
function in upper case. Generally, the TAB
key (chr$(9)) is used, if there is only one
application subwindow,

It is possible to define application subwindows
with these first four parameters only. In this case,
we have a simple application subwindow, and the
call to RD_PTR (see below) wil come back each
time the pointer has moved or a key was hit (pro-
vided, of course, the pointer was in the applica-
tion subwindowl).

18

QL 7oday

If. however, you wish to define a menu application
subwindow, you must fill in more parameters
which will be explained below.

IV - LEVEL IV:
Defining rows and columns

Before starting on this, let's see what a menu
application subwindow consists of This is one of
the most complex aspects of QPTR program-
ming - again, it is not difficult, there are just many
parameters to learn (and remember).. However,
if there are many parameters, this also means
that you wil have a large freedom to set up
these windows (else the parameters wouldn't be
of any use).

A - The components of a menu application sub-

window

As we have seen above, the first parameters of
an application subwindow are normal: size and
origin of the subwindow, colour and size of its
border, pointer, "paper” colour and "selkey’. These
parameters shouldn't be complicated.

Apart from that, an application subwindow is
nearly entirely composed of ‘objects’, ie the
items of the menu. As mentioned, these are
similar to loose meny items, but are arranged in a
grid of rows and columns.

If need be, one my also add the scroll/pan bar
and scroll/pan arrows. You can clearly see this in
the "Files” menu of QPAC 2 , where all of these
elements are visible. The "objects” are, of course,
the filenames.

Just as a reminder: when the window can be
scrolled up and down, then this is a "scroll. If the
same is possibel for left to right, then this is a
pan’.

1) The objects

As mentioned, the objects are items, quite similar
to loose items. Here again, you must make a list
of these objects and specify the type of each
object (text, sprite etc.). In most cases it wil be
text, but not necessarily so, as Jérdme Grimbert
shows in these hallowed pages of the august
magazine (see his series on XMenu).

For each object, you also specify a possible
selection key, the content type (ie. the text), the

content itself and the position in the grid. As you
can see, quite a long number of parameters. This
fist is made up of Level V parameters which will
be detailed later, and is buit with the MK_AOL
function.

Let's suppose for now that the list has already
been built and that “objlist™ is the result of the
MK _AOL function.

Since the objects of an application subwindow
behave similarly to loose menu items, the current
item is also surrounded by a border lke the
current item in a loose menu. The objects can be
selected, thus changing their status, and if an
object is "done’, it may produce an action.

Here again, like for menu items, you will have to
determine the attributes of these objects: the
colours for the different statusses, and the colour
and size of the current menu item border These
are common for all items of an application sub-
window. Of course, different application subwin-
dows may have different colours (f'm not sure
whether that would be a good design practice,
though).

This is where the similarity with loose menu
items ends, as here we do not have 'loose’
items, but "bound’ items - they are bound to each
other and part of a grid of rows and columns.

2) Columns and rows

Since the items are part of a (hopefully regular)
grid, we must specify how these objects are to
appear in the grid. Whilst this is necessarily in
rows and columns, you can specify how many
rows and columns there are to be. The columns
for each row need not be identical.

In most cases, the most important element is the
row. You must determine which object(s) can be
found in which row. Thus you must establish a
row list which clearly states what row contains
which objects, eg. show that it contains objects
a to b. The next row then contains objects ¢ to d
etc.. If there is only one object per row (eg. The
QPAC 2 Files” menu with "Statistics” switched on)
this is not really complicated: you just indicate
that object 1is inrow 1, object 2inrow 2, 31in 3
and so on.

If there are two objects per row, you will indicate
that objects 1 and 2 are in row 1, objects 3 and 4
inrow 2,5 and 6 in row 3.. - you get the picture.

QL Joday

19

(This row list is made with the MK_RWL function,
commented below).

So. by now we will have indicated the content
and parameters of each object, and in which row
each object is going to go. Now you have to
determine the size of each row, by determining
the size of each column.

Each column as two sizes: the 'hitsize’ and the
'spacing’ between objects. There is one of each
per column in the row.

The hitsize is the maximum size of an object in
one column of the row - this actually defines the
column size. It is this size that will change colour
according to the status of the item. Again, look at
the "Files” menu - if you click on a filename, it is
not only the paper under this filename that
changes colour, but the whole area that goes up
to the second column (if any), and this, whatever
the length of the filename may be. It is also that
area which is outlined by the border when you
bring the pointer over it, showing that this is the
current item.

The "spacing” determines the number of pixels
between the beginning of the hitsize of the first
column and that of the hitsize of the next column,
if any (and then the next columns, if any etc..).
Clearly, the spacing must be at least as large as
the hitsize, and ideally a bit larger (so that the
border around the current item can be shown).

Let's presume that we have four rows with three
columns each. And let's further suppose that the
objects in the second column will be longer than
those in the first column. | could then define the
hitsizes and spacings as follows:

column one : hitsize 50, spacing 54
column two : hitsize 70, spacing 74
column three: hitsize 40, spacing 44.

The numbers correspond to the sizes in pixels:
the first column will have a hitsize of 50 pixels
and a total space (spacing) of 54 pixels. There
will thus be at least 4 pixels between the object
in that column and the object in the next column.
You should make sure that the column is at least
as long as the largest object that can go into it. If
not, the object will be cut (if it Is a text) or even
not drawn at all (if it is a sprite).

You determine the hitsize and spacing for each
column of each row. By doing this, you build up

what is called the "spacing list”. There is no need
to have each column in each row to be the same
size as that of the rows above and below. You
don't even have to have the same number of
columns in each row. Again, | consider it to be
good programming practise to have a regular
grid. It does make presenting the data easier.

It seems obvious that if you add up the spacings
of each row in each column, you should get the
size of the subwindow. It is possible, however to
exceed that size, in which case the application
subwindow becomes "pannable’.

Likewise, if the combined height of all rows ex-
ceeds the height of the window, the window be-
comes scrollable.

3) Sections

An application subwindow can be cut up into
several independently scrollable (or pannable)
"sections’. Each section can be scrolled indepen-
dently, but they all show potentially the same
data.

Sections are not necessary for application sub-
windows. If you take the QPAC? Files menu for
example, there are no sections. Let us suppose
there were, though. If you have so many filenames
that the window becomes scrollable, you could
cut up the window into two sections. The window
would be split up horizontally into two sections,
there would be scroll bars for each section.

In principle, each section has its own scroll
bars/scroll arrows (and pan bars/pan arrows of
course). That way, you can see, at the same time,
the start and the end of your data (in this case,
the filenames.

It is important to realise that all sections may use
the same rows and columns, and thus you can
see all of the data in each section - you just have
to scroll through it.

The user doesn't have to use the same different
sections. In general, when the user brings the
pointer to the scroll bar (NOT the scroll arrows)
and "does” on the place where the two sections
come together the sections are joined and
become one.

4) The control definition

The control definition tells the pointer Environ-
ment:

22

QL 7oday

* how many sections there are

* how many rows there are in each section
* at what row each section starts

* where each sectionstarts in the window

OK, we have now seen the different elements
that make up the application subwindow. So let's

start defining them.

B - The parameter

- % xoff% This parameter just gives the num-
ber of pixels between the left border of the
window and the first object on the left of
the window. This applies the the first column

of all rows of the applicaton subwindow. If

left at Othe first object wil be right up
against the left hand side of the application
subwindow.

- X% yoff% is the distance, in pixels, between the
uppermost visible row and the upper border
of the application subwindow.

First of all, you may have noticed above that two

parameters to the MK_APPW function were left

unexplained:

Ok, that's It for this time. Next time, we'll continue

looking at level IV parameters.

QTrans Review

John Perry

QTrans is a quaintly named file
copy and transfer utility While
QL file handiing programs are
ten a penny, this is one of the
ones which does stand out
from the others. This review is
of version 1.03 which had just
been released at the time of
writing this review. In fact, it was
the latest in a flurry of releases.
For a start it's pointer driven.
It's claimed to be a precursor
to a full blown GUI (Graphical
User Interface) for QL systems.
And it has quite a few novel
features, like the dual file listing
windows enabling you to see
simultaneously the list of files
on both the drives you are
copying files from and to. In ad-
dition it has all sorts of com-
mands and facilities for just
about any file action from view-
ing and printing to searching
and trashing.

Trashing? Wel, one of the novel
features of this program is the
Tash Can. This is a facility
which lets files be deleted, but
done so in a way that allows
you to undelete later

It's a fairly rudimentary form of
recycle bin" or similar faciity
found on other computers. It is
not a true 'delete’ action but ra-
ther files are put into a special

QL Today

folder on a hard drive rather
than being deleted as such. In
fact, there is a choice of Delete
or Tash commands, meaning
you can choose how files are
deleted {provided you remem-
ber to use the correct com-
mand of coursel)

The author suggests you give
this folder a short and unusual
name such as WINI_*_ or a
single letter name if you prefer
something easier to remember |
opted for WINI_*_ as it made it
less easy for me to use a
command from BASIC, for
example, to accidentally delete
something from this folder! In
use, it worked well enough
even if the Tash directory
seemed to fill up at an alarming
rate the way | go through files!
In fact, for each file trashed, it
seems to create two files, one
with the original filename, and
another much shorter file with a

flename suffix of _T which
contains details of where the
fle came from and the original
fle dates - yes, it even preser-
ves file dates if that's important!
The content of the Trash direc-
tory can be viewed just like any
other directory on your hard
drive and restoring files is as
easy as copying files normally
Either navigate to the Trash Can
folder or simply hit or do on the
little icon of a bin, then select
the Untrash command and it'l
offer the choice of whether to
restore the file to the original
directory it came from or to the
current path, which is what it
calls the directory content
shown in the other window.

I've realised I'm letting my en-
thusiasm get ahead of me here,
so let's start with a screen
dump from the program to
show you the basics of what
this program is all about.

23

So you can see where we have single stepped
through the above code, and we are just about
to jump to label 'T24_NOT_T30" because this
instruction is not a type_30. Except, we know
that it is an ADDX instruction because that is
what | was testing, and ADDX is a type_30, so
what have | done wrong?

| have tested bits 7 and 6 and found them both
to be zero (because the Z flag was set after |
stepped through the ANDIW $CODO instruction.
This means that the jump should not be taken to
T24_NOT_T30 because | have not yet ascer-
tained that the instruction is not an ADDX. With
bits 7 and 6 set to 00, | could be looking at
ADDX or ADD. | should not be taking the jump
until | have further tested the value in bits 5 and 4
as per my algorithm above.

This could be why the ADDX is being decoded
as ADD, because | have the wrong condition in
my test In order to fix this, | have to change the
source code, re-assemble and try my test again.
| do this without the QMON?2 first of all and if it
still fails, | can use QMON2 to try and find out
why again. | need to give the current job a 'G’
instruction and then | can ESC from the decoding
and exit the program.

| shall go do that and report back. Hang on here
for a bit

Ok, I'm back. | made the change from BNE.S' to
'BEQS' and it worked fine. So it looks like | have
correctly identified the bug. | need more testing
though to make sure | cover all possible op-
codes. | have followed up my ADDX testing by
passing test files which have ADD, ADDA, ADDQ
and ADDI instructions, along with assorted SUB
variants and all appears to be working well.

So there you have it, an example of how | ma-
nage to get my code wrong and how | can use
the tools available to try to sort it out. As | men-
tioned earlier QMON2 is available from Jochen
for a small fee, but only if you understand Ger-
man manuals.

Laurence {Lau) Reeves has a different version of
QMON2, written by himself, which fixes some
bugs but | don't know if this is widely available or
if it comes with a manual. Perhaps he could be
persuaded to part with it or make it available -
who knows. I'm not sure if he ever wrote a
manual for it though.

See you next time.

Programming QPTR in
SBASIC

W Lenerz

Second Part - Displaying Windows

OK, by now | don't really know what part of this
series we'e in anymore... (Kudos to Herb Schaaf
for keeping his numbers up!). However, we've ar-
rived at the second section of this little walk-
through.

Once we've defined our window, it's time to put it
up on the screen. Do not forget that the first
window to be opended is very important - it is
the primary window, and all other windows (the
secondary windows) must be within that primary
window. The keywords for bringing windows
onto the screen may be grouped into several
sections: first, how to display the window in itself
(I}, then changing something within the window {(ll)
and, last but not least, opening channel(s) within
the window.

In the following explanations, | shall try to keep
variable names coherent with what has gone

before, whenever the same variables are to be
used.

| - Displaying the window

There are two purposes for this. The main pur-
pose, of course, is to display the content of the
window. Second, one wants to make the window
‘'managed” by the Pointer Environment. Indeed,
only a window properly managed by the Pointer
Environment may profit from all of the advantages
granted by that Environment.

There are two keywords for displaying windows
in the Pointer Environment. There is also a key-
word to make an already existing window a ‘ma-
naged” window. Attention, we're talking about dis-
playing the main (primary and secondary) win-
dow itself. not the sub-windows. There is no key-
word to display the subwindows specifically -
they are displayed automatically with the primary
or secondary window.

A - making an existing window "managed”
The command "OUTLN" (OUTLiNe) makes an

existing window managed and makes the Pointer
Environment aware of the window. The window
concerned is one opened with a normal "OPEN
command.

18

QL 7oday

The syntax of OUTLN is as follows:
OUTLN [#channel,]xs,ys,X0,y0

The parameters are the same os for a normal
open command: the window x and y sizes and
the window x and y origins. "channel’ is channel
"1 by default.

Please note that, when working in S*Basic, the
normal Basic windows (channels #0®1 and #2)
are not managed by the Pointer Environment in
an automatic way.

However for a successful programming session
with QPTR under S*basic, channel #0 (Basic's
‘orimary” window) must be managed by the
Pointer Environment. Thus, channel #0 MUST be
managed by the Pointer Environment at the start
of the programming session - just use OUTLN for
that.

If you dont do that, you wil get many a bad
surprise, as, notably, the pointer wil not be read
correctly, and your loose items will seem not to
function correctly.

B - Displaying the window

Putting the window up on the screen is achieved
with two commands: DR_PPOS and DR_PULD,
standing respectively for 'DRaw Primary and
POSition” and 'DRaw PULIDown window’. These
are commands, not functions. They are very simi-
lar being responsible for displaying the window
on the screen and making it managed by the
Pointer Environment. The difference is that
DR_PPOS is used only for primary windows, and
DR_PULD is used for secondary windows (also
called pulldown windows, hence the name of the
command). Moreover DR_PPOS can use a chan-
nel parameter, while DR_PULD doesn't {the chan-
nel is opened automatically by that command).

The entire parameter list for the commands is:

DR_PPOS [#channel,] workdef, xpos%, ypos%,
liflags%, appflags% [, xctrldef%, yetridef%]

As mentioned above, the optional channel para-
meter does not apply to DR_PULD.

=% Workdef is the working definition as re-
turned by MK_WDEFE

2% xpos%h and ypos% are integers which de-
termine, in a very roundabout fashion, the
position of the window. Indeed, obtaining
the window's initial position is a bit counter-
intuitive: xpos% and ypos% do not deter-
mine the x and y position of the upper left

hand of the window as could have been ex-
pected. In fact, x and y determine the place
where the POINTER will be on the screen
once the window is drawn. The window is
then drawn around this pointer position in
such a way that the pointer is located at a
predefined location within the window!

Indeed, we saw earlier that one of the para-
meters of the MK_WDEF command is the
initial pointer position of the pointer within
the window. Thus, when the primary win-
dow is drawnthe sequence of events, for
the positioning of the window, is as follows:

The pointer is set to the xpos%ypos% posi-
tion given as parameter to the DR_PPOS
command. Then the initial pointer location of
the pointer within the window is looked up.
After that, the primary window is drawn
around the pointer in such a way that the
pointer is located exactly where it should be
within the window. As mentioned above, a
pretty roundabout way of handling things..

Of course, determining where the window
will etfectively be drawn is easy, and can be
calculated as xpos%-x and ypos%-y. where
xpos%h and ypos% are the parameters to
the DR_PPOS command, and x and y are
the parameters to the MK_DEFK function.

As can be expected, this pretty complica-
ted way of positioning the window does
have a reason - it is possible to set the
xpos% and ypos% parameters to -1. In this
case, the window will be drawn in such a
way that the pointer is not moved at all. This
Is 10 make sure that windows can appear
where the pointer is, so that the user's
focus (which is generally on the pointer)
doesn't need to change.

As a general way of doing things, this
makes sense. The only difficulty arises
when one wants a window to appear at a
predefined position. | personally find the cal-
culations to be made to ensure that the win-
dow appears at a certain position too com-
plicated. So what | generally do when a
window must appear at a certain position, is
to set the initial pointer position within the
window to 0. That way the xpos% and
ypos%h parameters to DR_PPOS do deter-
mine the point where the window wil be
placed. After that | just set the pointer
position within the window with another
QPTR command....

20

QL 7oday

X

liflag% is an integer array of DIMension (n-1)
where n is the number of loose items the
window contains. The array is used as a
flag array, where each element of the array
is a flag containing the statuses of the items
- you might remember that each item can
have several statuses (selected, available,
unavailable and current item). When the
window is drawn {and also later when the
pointer is read) you wil have to determine
what status each item is to have - some
items may be unavailable initially, or selected
etc.. This, of course depends entirely on the
program. For a file copier, for example, the
"Copy’ item might remain unavailable for as
long the the user hasn't chosen source and
target directories.

Each loose menu item corresponds to one
element in the array: liflag%(0} is for the first
item, liflag%(1) for the second and so on.
The values these flags can have are pretty
simple, as follows:

-0 :theitemis available
- 16 . the itemis unavailable
- 128 - the item is selected.

There is no special value to indicate the
current item, because the Pointer Environ-
ment itself automatically determines what
item is the current item and then draws the
border around it, and this depending on the
pointer position. Thus, if you wish for any
particular item to be the current item as
soon as the window is displayed, you must
set the pointer to such a position that it is
"within™ this item.

As the DIMension of the liflag% array de-
pends entirely on the number of loose
items, it is recommended to DIM this array at
the same time one establishes the loose
menu item list, because at that time one
knows exactly how many loose items there
are in the window.

appflag% is the same thing as liflag%, but
for the menu application window(s). there
again, each object of a menu application
window may have several statuses (the
same ones as for loose menu items). There
IS one array per application subwindow, and
they are DIMmed as follows: DIM
appflag%h{row-1,sec-1) where row is the
number of rows for all of the objects and
sec is the number of sections. If there only
IS one section, then one uses DOM
appflag%{row-10).

=% ctridefx% is, again, an integer array of Di-
mension crildefx% (maxsec%.2) where
maxsec% is the number of sections as de-
fined in the x control definition (horizontal).
The values of this array are a bit special, as
follows:

(0,0) contains the number of control sec-
tions (ie. maxsec%).

(0.1) contains 1 if the control definition just
changed, else 0.

Then, for each control section i:

(10) contains the start pixel position.

(i1) contains the number of the first row
shown.

(i2) contains the number of rows in this
section.

- % ctridefy% is, you will have guessed, the
same thing for vertical sections and co-
lumns, instead of horizontal sections and
TOWS.

Please note that the two last parameters are
optional: if there is no control definition, they may
be omitted or simply set to 0. However, there will
be as many flag and definition arrays as there will
be menu application subwindows (of course, they
are not necessary for simple application subwin-
dows). If you have several application subwin-
dows, you may omit the flag arrays for those
where you don't need them.

These are all of the parameters for the two
commands, DR_PPOS and DR_PULD. Both com-
mands are similar they display a managed
window on the screen. As was mentioned above,
the main difference between these two com-
mands is that DR_PPOS is used for the primary
window, whereas DR_PULD is used for seconda-
ry windows. DR_PPOS can use a CON channel
(which must have been opened beforehand, the
default channel being #1).

The problem with that is that you have no chan-
nel number for secondary windows. Indeed the
DR_PULD command opens a window and a
channel by itself {a channel of type CON) - but
this channel is NOT accessible from S*Basic.
There is no Basic channel number corrsponding
to the window opended by DR_PULD. This is
different for DR_PPOS which can use a channel
in which all the normal operations (PRINT etc) can
be made. Thus, DR_PULD opens an inaccessible
channel.

QL Joday

21

Moreover, there may be a certain number of pro-
blems when compiling. Indeed, in S*basic, one
can practically not use the DR_PPQOS command,
as that would mean opening a primary window.
But, as we have seen, window H0 of S*basic
should be the primary window for the S*Basic
job, and a job cannot have two primary windows.
Channel #0 was made the primary window with
the OUTLN command. Thus, in interpreted basic,
you will rarely use the DR_PPOS keyword.

There are two consequences to this:

First, if the program is to be compiled later on,
one should include some lines along the follow-

iﬂgz

IF compiled
OPEN#1,"CON_"
DR_PPOS (parameters)

ELSE
DR_PULD (parameters)

END IF

Thus, you open a channel #1 {which for nearly all
commands is an implicit channel) in a compiled
program, and then you open a primary window. In

interpreted Basic, you open a secondary window.
Second, there may be a positioning problem
when displaying secondary windows: indeed, like
for primary windows, the positioning of the se-
condary window is achieved via the xpos% and
ypos% parameters, which were described above.
However, for secondary windows, these parame-
ters contains the true coordinates {(no muckling
about with the pointer position here) where the
window will be displayed. This however means
that you cannot know where within the primary
window the secondary window wil open - the
user may have moved the primary window from
its original position.

Of course, there is a solution, as you can use the
pointer positioning. If xpos% and ypos% are given
as -1, the secondary window will open at the
pointer position. You can thus set the pointer
within the primary window to a certain position
and then open the secondary window.

Ok, this is it for this time - in the next instalment
we'l cover changing a window once it has been
displayed. Is there anybody out there reading this
series at all?

3D Perspective Animation

- Part 3: Trees

Stephen Poole

output. So | had to write my
own method from scratch, and
decided to draw bifurcation
diagrams viewed at an angle,
with leaf-production by random
plotting, and the result was
satisfactory enough for my

In QL Today of march 2003 |
mentioned trees as part of 3D
Perspective Animations, but
omitted the code to draw
these from the article. This
article will set that right. First of
all, I must apologise to readers
for not having divided my vari-
ous 3D programs into modules,
which would have meant less
typing each time. This is be-
cause | did not expect to print
so many articles from the start,
otherwise | would have plan-
ned things out better Mea
Culpal

In 1988, a french magazine
printed an article entitled
Growth of Plants’ for the Atari
ST This ‘interesting’ program
allows you to enter strings of

characters which control the
mathematical properties of
plant-growth, but, patently, the
code doesn't work, even on
the ST {| have probably lost
hundreds of hours typing in
programs from magazines that
rarely work, even after a consi-
derable ammount of debug-
ging. One wonders if the ma-
gazines possess the necessa-
ry computers to test them on.
[Screenshot attached, to
show that we run the pro-
grams - Editor] But nowadays
published programs are rather
a rarity). | have also a book
called 'Patterns in Nature'
which describes plant growth,
but unfortunately does not de-
scribe the formula for graphic

22

needs. For more detalls on
simple binary-trees, see the
forthcoming article in Quanta.

This program has been event-
ful for me as for the last 20
years | have been working
uniquely on a monochrome
monitor. So | promised Jochen |
would link up my JS to our
television set and experiment
with 4 and 8 glorious colours
(to improve the otherwise psy-
chedelic output). However, | still
prefer the look of the trees on
my monochrome monitor, as 4
or 8 colours dont give suffi-
cient graduations for my liking.
No doubt GD2 is the answer..
Remember that these trees
are flat, so they must be drawn
at an angle. They could be

QL 7oday

Programming in Sbasic
with QPTR - Part 6

Wolfgang Lenerz

This time we continue to look at the level IV
parameters used to make menu application sub-
windows - indeed the most daunting aspect of
the Pointer Environment.

One of the first parameters is the rowlist, which
we make with the MK_RWL (MaKe RoW List)
function:

rowlist = MK _RWL (objlist,rows(n,1))

The parameters for MK_LRWL are as follows
(where 'n" is the number of rows - 1).

- % obijlist is the "object list". This will have been
obtained by the MK_AOL function, ex-
plained later in Level V.

=% rows is an array DIM rows(n-11) where ",
as mentioned above, is the number of rows
wished. This array is filled in by determining
for each row, which object is to be the start
object of the row and which is to be the
end object. Let's suppose, for an example,
that we wish our objects to be in 4 rows
with three columns each, and in the order
the objects are found. The array wil thus
contain: rows(01)=0 (start of row 1) and
rows(0,1)=3 - end of row 0. The row 0 thus
contains objects 01 and 2. Next, rows({1,0)=3
and rows(1,1)=6 - row 1 thus contains ob-
jects 345 As you can see, for the end
marker we use the next element: to state
that object 5 is the last object of row 1, we
set rows(1,1) to 6.

For each row, you MUST give as many
objects as there are columns for the row! It
is unfortunately not possible to specify sim-
ple x elements starting from y, where x is
the number of columns. Nor is it possible,
say in row 2, to have object 2, followed by
object 18 followed by object 6. On the other
hand, you can specify that row 1 has
objects 5 to 7, row 2 has objects 1 to 3 and
row 3 has objects 3 to 5 - overlapping is
thus possible. The object number used here
is simply their place (index) in the list of
objects that you have built up in level V: the
first object in the list is object number 0, the
second is object 1 and so on.

The next parameters that need explaining are
x_spacing and y_spacing. They contain the
"spacing list”. This is obtained by the MK_ASL
(MaKe Application subwindow Spacing List) func-
tion, as follows:

x_spacing = MK_ASL (size%(n,1), indsize%,
indspacg%)

where:

- % Sjze% is an array DIM size%(m.1) where m is
the number of columns (not rowsl). For each
element i, size%(i,0) contains the hitsize and
size%(i1) contains the spacing of object i-1.

- ¥ indsize% and indspacg% are optional para-
meters: they are used for the "index bars’,
something which nobody has ever really
understood. They are best left at 0, even
though they are explained later on.

Of course, defining one spacing list is not enough
- we will only have defined the object sizes in
one dimension (the x axis), but what about the
other dimension, the y axis? Defining the spacing
and size for one dimension is not sufficient, we
know the sizes from left to right but not those
up/down. So we must build a second spacing list,
for the columns this time. This list is build up in a
similar manner to the x spacing list above:

y_spacing = MK_ASL (size%(n,1),indsize2%,
indspacg2%)
where n is, this time, the number of rows minus 1.

Right, we have built the spacing list - now we
have to establish the "control defintion”. This tells
the Window manager how many "sections’ there
are in the window (in each direction) and at what
row (or column) each section starts.

A "section’ is just a collection of rows (or columns)
that can be scrolled independently. It is as if you
cut the window into 2 {or 345.) independent
parts, each with its own scroll arrows. Many
windows only have one single section, but
several are possible.

If all of your rows and columns fit inside the
window at once you don't really need sections
and, such a control definition isn't really useful and
it can be left at 0. In Sbasic, the control definition
also allows you to determine the colour and size
of the scroll arrows, in addition to the sections
themselves.

The control defintion is made with the MK_CDEF
(MaKe Control DEFinition) function:

x_ctrldef= MK _CDEF (secmax%,arrcol%,
barcol%,barseccol%)

QL 7oday

21

x_ctridef is then one of the parameters for
MK_APPW.
The parameters for MK_CDEF are as follows:

- % secmax% is the number of sections.
- % arrcol% is the colour for the scroll arrows.

-» % barcol% and barseccol% are the colours of
the index and section bars - again, leave
these at 0.

With this, you have build a control defintion (here,
for the x axis). The same applies if you want to
have vertical sections:

y_ctrldef = MK _CDEF (secmax2%, arrcol2%,
barcol2%,barseccol2%)

Contrary to the spacing lists, you do not have to
have a control definition for each dimension. If you
do not have a control definition for any direction,
the pointer may be left at 0.

Later we will also have to initialise a definition
control array, as follows:

DIM cty%(secmaxZ,2)

This will be used in the read pointer loop.
cty%(0.,0) contains the number of current sections:
Even if you have provided for the possibility of 2
sections, there may be only one to start with, or
there may once have been two but the windows
have been joined later.

cty%(01) is o 0 if the control definition has
changed.

Then, for each section i, elements (i,0), (i1) and (i.2)
remain. The contain the following information:
*(i,0) is the y position, in pixels, of the start of the
section within the window.

* (i1) contains the number of the start row (ie. the
first visible row).

* (i.2) contains the number of rows visible in the
section.

Indexes

The two last parameters for MK_APPW, ie. the x
and y indexes concern the index bars, and they
may be left at 0. If you do fill them in, they must
contain the hitsize and spacing lists for the
indexes (just like the ones for the window). Here
are some details about the indexes. Menu
application subwindows may be provided with
indexes’ which are printed outside the menu
application subwindow - for example the number
of rows and columns in a spreadsheet. To do this,
you must fill in all of the parameters concerning

the indexes. | presume that Qspread (supplied by
JMS) does use these indexes - and if it does, it
must be the only application ever to have done
S0.

V - Level V: Defining the Object List

A - The object list

As we saw above, it behoves us to create an
object list, which contains all of the objects of the
menu application subwindow. This list is set up
with the MK_AOL {MaKe Application subwindow
Object List) function.

objlist = MK _AOL(olattr, oljus%, olkey$,
oltype%,olstr$,olspr,olblb, olpat)

These parameters have the same meaning as
for the MK_LIL function (see my earlier instal-
ments in this series). However, there is no para-
meter defining the window or the sizes (we have
already seen above how the sizes and spacings
are defined). Nor do we define the origin of the
object, which seems quite natural as the object
is part of a regular and organised menu. More-
over, the object doesn't necessarily stay at a
fixed position in the window, as it is possible to
split an application subwindow into sections, and
join them together later on. In addition, the menu
may be scrolled or panned, and thus the object
does not stay in a fixed position with respect to
the window. However, we must define the
attributes (same attributes for all objects) and
then the justification, selection key, type and
content for each object - these parameters
should all be pretty clear by now. In the "files’
subwindow of QPAC2, the type is of course a
string and the content of the object is the name
of the file. Actually, the type will generally be a
string, but not necessarily so, as Jérome Grim-
berts examples in these pages have shown!

B - "Blobs” and "patterns”

A blob is a structure that defines the shape of a
visual object. This is similar to tracing a character
on the screen: with a character editor, one can
define what pixel must be "on” and what pixel
must be ‘off’. However, the character is only
visible when it is printed on the screen with any
INK on any PAPER (or, rather, STRIP). This is similar
for blobs, except that you are not limited to the
size of one character

22

QL 7oday

However, a blob has no colour, it just states that
this pixels is on but not that another pixel is not
on. It does not say what colour the pixelis to be,
that will be defined by the colour pattern.

Thus, without a pattern, the pixel would be
invisible, because it would be transparent,
having no colour. The blob is like a mask which
lets colour shine through or not.

A pattern is just the contrary — it is the definition
of a structure with colours, but without a
particular shape. By combining a blob (a shape
without colour) and a pattern (a colour without a
shape) we obtain something that is visible on
the screen. A pattern without a blob can't be
seen because it has no shape. Only the combi-
nation of the two produces something visible. A
sprite is an example of a blob combined with a
pattern, as it defines, at the same time, a shape
and the colour of each pixel within that shape.

Let's re-use the example of the arrow which we
had used for the sprite. It was something like
this:

90 DATA ! a !
100 DATA ' awa !
120 DATA ' awwwa '
130 DATA 'awawawa'

140 DATA ' awa '
150 DATA ' awa !
160 DATA ' awa !
170 DATA ' awa !
180 DATA ' aaa !

This arrow can also be used as a blob because
it defines a shape. It is just that for the blob, it
makes no difference whether the colour in it is
"a” or 'w" or anything else. The only thing that
counts is whether the pixel is transparent (' =
off) or not (any colour definition - "w’,"a’,r", '@’
etc means that the pixel will be on). The colour
itself is then filed in with the pattern. When the
above data is used as a sprite, the pattern is
made up from the colour information contained
in the arrow data. But if the above is used as a
blob, the colour information just tells us whether
a pixel is on or off,

Now we shall apply a pattern to this blob:

DATA 'rrrarrr!'

This mean that the arrow will be red, except for
the pixel in the middle, which will be black. This
pattern is applied to each row of the blob in turn
and it is the combination of both that produces a
visible object on the screen.

But why do it in such a complicated way when,
as when have seen for sprites, everything could
conveniently be made up in a single block? Well,
that's just why: if everything is in a single block,
you have to redefine everything if you want to
change just one colour If, for a sprite, | want
everything to be red instead of black, I'd have
the redefine the entire sprite. With a blob and a
pattern, | just design the blob and several pat-
terns and thus | can change colours as | want to,
by using different patterns with the blob..

As a pattern may be defined in a single line, this
Is pretty fast! But a pattern may also be much
more complicated and there may be one pat-
tern line per line in a blob. This is what happens
for sprites. In the above example with the arrow,
QPTR makes up a blob and a pattern from the
information contained in the data: a blob makes
up the shape of the object, and there is a pattern
with as many lines as there are lines in the blob.

For the basic programmer using QPTR, pattern
and sprites are defined exactly like sprites -
you should just make sure that the sprite origin
is 0,0 because, of course, blobs and patterns
don't have origin (and if you dont understand
why not, even though a sprite has one, Id
recommend re-reading the section on sprites!)

You will be happy to know that this concludes
the first big section of this series. By now, we
have seen all there is about defining windows. In
the next instalment, we'll be able to start on
actually making the window appear on the
screen.

Just a word of advice. | Have tried to cut up the
window information into different levels, starting
at the top level and then working down. When
you set up your window, you would, of course,
do it the other way round: first you build the
lower levels and then you work your way up,
since you often need the lower level pointers
and parameters for the higher level ones.

24

QL 7oday

9 window resize "
10 sleep
11 wake
12 1
13 £2
14 £3
15 4
16 5
17 6
18 7
19 8
20 f9
21 10
22 f11
23 12
24 cfl
25 cf2
26 ef3
27 cfd
28 cfb5
29 ef6
30 ef7
31 cf8
32 cf9
33 cf10
34 efll
35 cf12
36 cursor
37 winking cursor

NOTES

1. Sprites 8 to 37 are new system sprites.

2. sprites 6 and 7 are 'mouse pointers” and sprites
8 and 9 are "window sprites’.

Concluding Puzzle

1. A colour value in a working definition is $0220.
2. The 33rd entry in the system palette linked to
the program is $0220. 3. What happens?

A PS - the Twice MT_RECHP Bug

The 3.xx versions of SMSQ/E do not adhere to
the original QL memory layout. Free memory
used to be found between SV_FREE and
SV_BASIC. In the new versions of SMSQ/E the
space between SV_FREE and SV_BASIC is
limited to about 840K, the real free memory being
elsewhere.

However, in v3.01, if MT_RECHP is called twice
with the same address, the memory seems to
revert to the old SV_FREE to SV_BASIC area. A
large amount of memory will then seem to have
disappeared!

Programming QPTR in
SBasic - next part

Wolfgang Lenerz

Obviously not.
(And if youre wondering what this means, look at
the end of the last instalment!)

Il — Altering Windows

Several commands exist to change or alter
either a primary or secondary window entirely or
only in part {i.e. a sub—window or item).

A - Removing the window
First of all, a command to take the window away

entirely, which surely must be the most drastic
alteration...

DR_UNST workdef

where workdef is the working definition of the
window, as obtained by MKk _WDEF. The command
will remove the window entirely, including all of
the subwindows (but not the secondary win-
dows, which should, however have been re-
moved before) and will also remove the window
from the screen. If the window was opened via
the DrR_purDcall {ie. it is a secondary window),
then the implicit and inaccessible screen channel
open by that command is also closed automati-

cally - actually, this is the only legitimate way of
closing this channel (unless it is done by some
"external’ operation, such as QPAC2's "channels’
menu). If the window was opened with DR_PPOS
then the corresponding channel is NOT closed,
and should be closed later on if need be. If you
try to remove the primary window when secon-
dary windows are stil open, bizarre things will
happen, so try not to do that - always close se-
condary windows first and the primary window
last.

B - Changing the window
The size, position, content and certain attributes

of windows (and sometimes sub-windows) may
be changed.

1 - Changing the size or position of a window
With the cH_WIN("CHange WINdow’) command

you can change the size or position of the win-
dow. This command can only be used with se-
condary or primary windows but not with any
sub-window and is used as follows:

CH_WIN workdef [,xsize%,ysize%]

When you use this command without the two
optional parameters, the window will change po-
sition, i.e. move about the screen. Under QDOS,
the pointer changes to the 'move window” sprite,
you move it around and hit Space/Enter to signi-
fy to where you want the window to be moved.
Under more recent versions of SMSQ/E, it is also
possible to move the window itself, or its outline,

24

QL 7oday

around the screen. The movement of the pointer
sprite/window content/outline is automatically
handled by the Pointer Environment, the program-
mer doesn't have to do anything in particular
Using this command with parameters will result in
a change size operation, The parameters are:

- * workdef is the working definition

- % xsize% and ysize% are optional return para-
meters. As mentioned above, when omitted
they signify that the window should only be
moved and the programmer doesn't have to
concern himself with this (other than calling
the command), all is handled by the Pointer
Environment. However, a few things should
be considered when using this command,
even in ‘move” mode.

If you move a (primary or secondary) win-
dow, all sub-windows are automatically
moved with it. Since sub-windows are de-
fined relative to the main window, this is as
should be.

However, if you move a primary window, the
seconday windows are not moved at the
same time. And this can result in quite some
unforeseen consequences. Hence, never al-
low the user to move a primary window
when secondary windows are stil open.
Look, for example, at the QPAC2 °Files
menu - when the F3 commands menu is
opened (this is a secondary window), you
cannot use the items in the primary window,
and thus cannot move the window about the
screen. To do that, you first must close the
seconday window.

Moreover, if you have opened a channel
over a subwindow or an item (more about
which later in this series), the channels ARE
NOT moved with the window - thus, after
each move operation, you should re-open
them again over the sub-window or item.

When xsize% and ysize% are not omitted,
this means a change size operation. The
pointer will change to the usual change size
sprite which you can move about the screen
to click and signify how much you want the
window to change size. At the click,
command wil pass back to the program.
Remember that xsize% and ysize% are
RETURN parameters. These variables then
contain, upon return from this command, the
displacement (+ or -) of the pointer, in pixels,
from the moment the command was invoked
until the user's click. For example, if the

pointer was at (100,100) at the time the
command was invoked and if the pointer is
then brought to (210.100) and then the user
clicks, xsize% wil contain 110 and ysize%
contains 0. If the pointer was brought to
50,110, xsize% will contain =50 and ysize%
10. And so on.

It is then the programmer’s responsibility to
re-draw the window entirely, taking into ac-
count the changed size as expressed by the
user It is not obvious how to achieve this -
in fact, the best way is to remove the win-
dow entirely, make a new working definition
and put the new window up on the screen.
In my opinion, this is one of the most feeble
aspects of the Pointer Environment, other
operating systems (even Windoze) do it
better than that, sometimes even clipping
the window automatically.

2) - Changing the pointer

At some time, it might be interesting to change
the pointer of a primary or secondary window.
One can even change the pointer for an applica-
tion sub-window (but not for any other sub-win-
dow). This change is achieved with the CH_PTR
(CHange PoinTeR) command:

CH_PTR workdef,win_nbr%,new_ptr
-» ¥ workdef is the working definition of the win-
dow.

= * win_nbr% shows the number of the window
or application sub-window to be changed: 0
for the first application subwindow, 1 for the
second etc.. If you want to change the poin-
ter for the entire window and not only an
application sub-window, use -1.

- % new_ptr is the address of the new pointer
to be used, as returned by SPRSP. If this pa-
rameter is 0, then the default pointer is used.
For a primary or secondary window, the
default pointer is a small arrow. For an
application sub-window, the default pointer is
the pointer used by the primary (or secon-
dary) window enclosing it.

3 - Changing the content of a sub-window,
object or item

The following command allows us to change an
object in a subwindow, whether it is an informa-
tion subwindow or an application subwindow.
One can also change the content of a loose
menu item with this command: CH_ITEM
(CHange ITEM,).

QL 7oday

25

CH_ITEM workdef, win_nbr%, obj_nbr%,

type%, key$, value

- % workdef is the working definition, as usual.

- % win_nbr% is the number of the sub-window
to be changed. Here, the following rules
must be observed:

- |f win_nbr% is -1, it signifies a change in
the main window, ie. a change in a loose
menu item only.

- If it is a negative value n other than -1, it
means an information sub-window, calcu-
lated as follows: ABS (n) -2. Thus -2
means information subwindow 2-2 = 0.
-3 means information subwindow 3-2=1,
and so on..

- |f it is a non negative value n, it means
the application sub-window n+1: 0 is the
first application sub-window, 1 the se-
cond etc..

obj_nbr% contains the number of the ob-
ject (or loose item) to be changed. The list
starts at 0, as usual.

- % type% is the NEW type of the object {text,
sprite, blob or pattern, using the usual
values).

- * key$ contains the NEW selection key for
the item or object (obviously, this is not
used for objects in an information sub-win-
dow which have no selection key). Use an
empty string (™) if you want to keep the old
selection key, or a nul value string (CHR$(0))
if you do not want the object to have a se-
lection key.

- ¥ yalue contains the new value. The type of
that depends on the type of the new object
(as indicated by type%) - this will be a string
for text items, or a pointer to a sprite, blob
or pattern for those objects that need one.

C - Redrawing part of a window
Once the content of an item, object or sub-win-

dow was changed, that (sub-) window containing
it must be re-drawn. For loose menu items or
menu application subwindow objects this can be
done automatically, without using any special
command, but there are also commands to do it
explicitly.

The implicit way (which does not exist for infor-
mation sub-windows and their objects and thus
only exists for loose menu items or the objects
of an application sub-windowj) is to set the "flag”
of that item to a certain value, which shows that

one wishes this object to be redrawn.

Indeed, we saw earlier that the DR_PPOS and
DR_PULD commands use ‘flag™ arrays for the
loose menu items and for the objects of menu
application sub-windows. | even explained how
these flag arrays are used to set and show the
status of the items when they are drawn initially.
These two types of flag arrays are also used by
the RD_PTRcommand, which is the main way of
reading the pointer, and which was explained in
an earlier instalment of this series.

If, before using this command, the value of an
element of the array is set to the value of the
status wished plus one, then the corresponding
loose menu item or menu application sub-window
object is automatically redrawn when the
RD_PTR command is next called As we saw
earlier a value O in an array element means that
the item is available, 16 means it is unavailable
and 128 means the item is selected.

Thus, if | want an item that was unavailable to
become available, | just have to place 0 + 1 in the
correspoding flag array element. The item will
then be redrawn with the new status at the next
call upon RD_PTR And, if the content of that item
had changed in between (using CH_TTEM, it will
be redraw with the new content. You don't even
need to change status: an available item (value 0)
will be redrawn as available if the value is set to 1.
Now, let's look at the explicit redraw commands:

1) Loose menu items

The command DR_LDRW (DRaw: Loose items
DRaW) is used to redraw one, several or all
loose items. It takes the following parameters:

DR_LDRW workdef,1ilflag%

—» % workdef is, as usual, the working definitions
of the window concerned (which contains
the loose menu).

- iiflag% is the same integer status array as
for DR_PULD.

Of course, before using this command, you
should place suitable values into the array, cor-
responding to the status of the items wished.
Then you add 1 to the items statuses - only the
items that have this change flag set wil be
redrawn — with one exception, however:

If NO element of the status array has the change
flag set, then ALL of the items are redrawn. The
logic of this is hard to fault - after all you are
only going to invoke this command when
SOMETHING at least has changed - if nothing is
then pointed out via the change flag, then all of
them must be redrawn.

26

QL 7oday

Most of the effects of this command can easily
be obtained by just setting the change flag in the
status array {adding 1 to each status) and calling
RD_PTR

2) Application sub—windows

To redraw an application sub-window, use the
command DR_ADRW (DRaw Application sub-win-
dow re-DRaW), as follows:
DR_ADRW workdef, win_nbr%, appflag?
[,ctrldefx%, ctrldefy%]

Here, all parameters are the same as for the
DR_PULD/DR_PPOS commands (except for the
win_nbr% parameter): working definition, flag
array and the control definition arrays. The
win_nbr% parameter contains the number of the
application sub-window concerned (starting at 0
as usual).

This is a more practical command than that con-
cerning the loose menu items, because you can
also change the control definitions. In that case,
you should not forget to set element (01) of the
changed control defintion to 1, to signal that it
has, indeed, changed.

3 — Information sub-windows

Nothing can change status in information sub-
windows - there are no items. But an information
subwindow can be redrawn entirely and thus a
changed content be put on the screen. This is
done with the command DR_IDRW (DRaw
Information sub—window re-DRaW).

DR_IDRW workdef, info_nbr
—» * workdef is of course the working definition.

- * info_nbr is a bitmap which indicates the win-
dow to be redrawn: for each information
sub-window, there is one bit. If this bit is O,
then the information sub-window must be re-
drawn, else it will not be redrawn. Info_nbr is
a long word (32 bits) and this command can
thus "only” be used for the 32 first informa-
tion sub-windows (that SHOULD be
enough!). Bit O is for the first information
sub-window, bit 1 for the second and so on.
Thus, if info_nbr = HEX$(FFFFFFE) this
means that information sub-window nbr 0
should be redrawn.

Il - How to set a Channel over a
Sub-Window

The main problem with sub-windows is .. that
they don't exist! At least not for the normal pro-
grammer. As was already mentioned, these win-

dows are not windows in the normal QL sense of
the word. They have no channel attached to
them, they are internal Pointer Environment sub-
divisions {not even inaccessible channel as the
one opened by DR_PULD for secondary win-
dows).

Actually, this makes sense. A typical Pointer Envi-
ronment window has many loose menu items,
several information sub-windows and often one or
several application sub-windows. It would not be
reasonable to give each of them its own channel
and channel ID - not only would we risk running
out of place in the channel table, but also, each
channel takes its own slice of memory. So, there
are no channels associated with the sub-windows.
However, sometimes it is necessary to have a
channel that "covers’ a sub-window or an item.
This is useful, for example, when one is supposed
to type something "into” a loose menu item.

The solution consists in opening a normal "CON’
channel and setting it over the item or sub-win-
dow. Once the operation is finished, the channel
can be closed again, if need be.

There are three commands to place channels
over each of the two types of sub-windows (infor
mation sub-windows and application sub-win-
dows) as well as loose menu items. | have alrea-
dy pointed out that, when the window is moved,
these channels do not move with it, and thus,
after each change in the window's position (or,
indeed size), you should re-set the channels over
the sub-window or item concerned.

Of course, the channel to be set over the sub-
window or item should be a "CON channel,
opened beforehand.

A - Setting a channel over an application sub-
window

This is done with the DR_AWDF command:

DR_AWDF #channel, workdef, app_wdw%

sets a channel over the application sub-window
the number of which is given by app_wdw%. As
usual, the count starts from 0. You will by now,
have guessed that workdef is the working
definition of the window enclosing the application
sub-window and #channel’ is the channel to be
used.

B - Setting a channel over an information sub-
window

DR_IDF #channel, workdef, info_wdw%

sets a channel over the information sub-window
the number of which is given by info_wdw%. As
usual, the count starts from 0. You will by now,
have guessed that workdef is the working defini-

28

QL 7oday

tion of the window enclosing the application sub-
window and "#channel” is the channel to be used.

C - Setting a channel over a loose menu item

DR_NWDF #channel, workdef, item%
sets a channel over the loose menu item the
number of which is given by app_wdw%. As

usual, the count starts from 0.

It is up to you whether you open and close the
channel after each operation, or whether you
keep open a genral putpose "con’ channel which
you set to the sub-window/item each time it is
necessary.

OK, that's it for now. More next time.

How to read QL disks on
a PC

Jimmy Montesinos

Before beginning

Disks that have been formatted on a QL cannot
be read directly on a PC without some special
software, such as a QL emulator Also, normally
disk interfaces on the QL will only format DSDD
disks (1440 sectors = 720 Kbytes).

If you use the more common form of HSDD disk
of (2880 sectors = 1.44 Mb) for your PC, you can
put sticky tape across the hole on the left of the
disk (not the hole which is used to make the disk
read-only). If you do this, the computer will think
that the disk is only a DSDD disk.

Preparation of a disk

With the use of a small utility, you can format a
disk on the QL, store data on it and later read that
data on the PC.

This utility is: QLTOOLS 2.7 and was written by:
Giuseppe Zanetti, Valenti Omar, Richard

Zidlicky and Jonathan Hudson.

It is possible to download it from:
ftp://ftp.nvg.unit.no/pub/sinclair/mirrors/gl/demon/

Qltools27.nt.zip is for use under Windows 2000
or Windows XP You might also want to read the
following web-page of Richard Zidlicky:

hitp://www.geocities.com/SiliconValley/Bay/2602/gl.html

After decompressing the file qltools.exe Onto
your PC's hard disk, place an empty disk in the
PC's disk drive and from the RUN command in the
Start menu, type:

Qltools \\.\a: -fdd QLFloppy

(Wa: is the description of the top disk drive in a
PC that uses Windows NT/2000/XP - there is no
space between the full stop and the backslash)

Later it is possible to format the disk from the QL.
Place the disk in the disk drive of the QL and

enter the command:

FORMAT FLP1_QLFloppy

There is a delay and the QL screen shows:
1440/1440 sectors

This part is needed only if your original QL floppy
cannot be read directly by QLTOOLS, which
should not happen with most disk interface like
Sandy QBoard, GoldCard etc.

To copy files from the QL to this disk
Now is the time to transfer the original files of the
QL onto this new disk:

If you have the TK2, you can for example use:
WCOPY MDV1_ TO FLP1_

After responding A ('ALL" Files) all the files on
MDV1_ will be copied to FLP1_ (the floppy disk).

In order to copy all the files of a QL disk to this
new disk the best thing is to use the Ramdisk.
This can be done with the following instructions:
FORMAT RAM1_1440

Then insert the original disk and enter:

WCOPY FLP1 _ TO RAM1 _

and answer A(All files).

Now insert the disk prepared on the PC and enter
WCOPY RAM1 _ TO FLP1 _

To read and use the files on a PC
under QPC2

The users who have the best QL Emulator in the
world (QPC 2) can directly read the files of this
disk using the same instructions as on the QL,
such as:

DIR FLP1 _

LRUN FLP1_boot

COPY FLP1 _ TO WIN1 _

ete...

You do not need to prepare a special disk for this
and can use the original QL formatted disk. QPC2
will even allow you to read from and save to a PC
formatted floppy disk directly (the standard QL
can read these disks with a variety of tools). If
you copy an executable file to a PC formatted
floppy disk, you have to remember two things:

QL 7oday

29

Programming QPTR in
BASIC - third part

Wolfgang Lenerz

Reading th Pointer

Reading the pointer will enable you to get the
user's response to the different possible menu
actions. This, of course is a paramount part of
programming in the Pointer Environment. You
have the choice between two different methods
of reading the pointer with three different
keywords (two of which are very similar). The
first method is the most interesting, even though
the second, a directy pointer read, can also be
useful.

| - Reading the pointer indirectly

This method makes our programming much
easier. It is structured around the RD_PTR (ReaD
PoinTeR) and the RD_PTRT (ReaD PoinTeR
with Timeout) keywords. When one of these
commands is used, the pointer is drawn on the
screen (in the shape determined by the working
definition). The user can move the pointer via the
mouse or the keyboard cursor keys. The com-
mands will only come back to the program when:

1) The user did {and in some cases hit) an item
in a menu or an application subwindow (or
used the respective selection key) and

2) this action did happen in this window -
nothing will happen if the user clicked out-
side of the window.

3) With the RD_PTRT keyword, a return can
also be made when a timeout or "job event’
occeurs.

The advantage of this command seems obvious:
it handles all of the changes in the pointer shape
and state, notably if you have specified different
pointers for application subwindows: the pointer
will automatically change when it is brought over
such an application subwindow. Likewise, when
the pointer is moved outside of the primary win-
dow, it may change shape and become that of
another window, or the default sprite (an arrow)
or a sprite showing that the window underneath
is not @ managed window or expects keyboard
input etc.

A click outside of the window is not acted upon,
and, in fact the command only comes back in
case of a timeout or job event (for RD_PTRT)
and when the user somehow actioned some-
thing inside of the window.

That's very practical for the programmer When
the command returns to the program, return
parameters indicate what happended. Thus, there
are a LOT of parameters for this command, but
they are all pretty logical. We'll start with the
RD_PTR command:

1-RD_PTR

ED _PTR workdef, item%, subwin%, event%,
xrel%, yrel%, 1liflags% {[,appflags%
[,ctrldefx% ,ctrldefy%]]}

Quite a mouthfull

The parameters are the same for both RD_PTRT
and RD_PTR, and they are as follows:

- % workdef is the window working definition.
The window can be a secondary or a pri-
mary window, according to how workdef is
set up. Unfortunately, when there is a pri-
mary window and a second window it is
not possible to choose in which one of
these you want to read the pointer: indeed,
if you open a secondary window "over” a
primary one (e.g. the ‘commands menu in
the QPAC 2 FILES program) the secondary
window locks the primary window over
which it is pulled down and which it covers
totally or partially. The primary window thus
no longer is the window on top and can't
read the pointer anymore.

- % item% is a returns parameter. It contains the
number of the item the user hit or did, and
which caused the command to return. The
return mechanism is as follows: you may
remember that one of the parameters for a
the definition of a loose menu item or a
menu application sub-window is its type
(text, sprite etc) to which one adds 256 or
-256: this type will then determine how the
item reacts when hit/done:

- If nothing is added to the item type , then
this item acts as follows when actioned: if
the item is hit, it just changes state - if
selected it becomes available and if avai-
lable it becomes selected, but it DOES
NOT cause the RD_PTR command to
return. If the item is done, it changes state
(to show that it was selected and hit) and
then causes the command to return.

- If -256 is added to the items type, both
actions (hit or do) will produced the same

16

QL 7oday

- X

result, ie. a change of state towards
selected (or available if the item was
already selected) and a return form the
RP_PTR command loop.

- If 256 is added to the item type , both a
hit and a do will again, have the same
result: the item will cause the RD_PTR(T)
command to return to basic, but the item
state will automatically be reset to availa-
ble, without any programmer intervention.

These last two cases (256 and -256) thus

cause an "automatic return” from the item

when it was hit or done.

subwin% is also a return parameter It con-
tains the number of the (application) sub-
window in which the pointer was located at
the time of the user action. If the pointer
was not in an application subwindow but
on a loose menu item or anywhere else in
the window (an information sub-window, for
example) then this parameter wil be -1.
With this, you can determine and find out
whether the user clicked a loose menu
item or an item in an application sub-win-
dow.

event%, again a return parameter, contains

the "event’ that caused this return. This

"event” may be either the fact of actioning

an item/object, or the press of any of the

following keys: ESC, F1, CTRL F1, CTRL F2,

CTRL F3 or CTRL F4. To each of these

keypresses corresponds a cerfain event,

and each event has a code which is thus

returned in the event% return parameter

These codes are:

1 =DO0 : an item was done (ENTER)

2 = CANCEL: ESC was pressed

4 = HELP : F1 was pressed

8 = MOVE : CTRL F4 was pressed (move
window)

16= SIZE : CTRL F3 was pressed (change
window size)

32= SLEEP : CTRL F1 was pressed (make
into button)

64= WAKE
(WAKE)

128= HIT on an item with an automatic
return.

Thus, the above keystokes will also cause

a return from the RD_PTR(T) pointer read

loop.

CTRL F2 was pressed

> % xrel% and yrel% are the pointer coordi-
nates at the time when the event caused
the return to the program. These coordi-
nates are relative to the upper left corner
of the window (of the application sub-
window) in which the pointer was when
the return occurred.

> * liflags% is the same flag array for loose
items as that used for the DR_PULD and
DR_PPOS keywords (see in an earlier in-
stalment of this series). Remember, these
flags may have a value of 0, 16 and 128. If
you add one to these values when caling
the RD_PTR command, then the item will
automatically be redrawn in the appropriate
status.

> * appflags% is the same flag array for
application subwindows that is used in the
DR_PULD and DR_PPOS commands
which we treated in an earlier instalment of
this series. Just like for loose menu itmes,
if you set any value of these flags arrays
to the status +1, the items will be redrawn
automatically upon entering this command.

- * cirldefx% and ctrldefy% are the application
sub-window control definition arrays.

Using this command is pretty easy because it
only causes a return for well defined events. It
can get included in a pointer read loop which will
be about as follows:
REPeat loop
RD_PTR «parameters,
post=item%:REMark SELect on floats only in QDOS
SELect ON subwin
=-1 : rem loose menu item
SELect ON post
=1:do_this
=2:do_that
=3:something else
. ete...
END SELECT
=0 : rem click in first menu appsub wdw
SELect ON post
END SELect
END SElect
END REPEAT loop

Thus, one reads the pointer and when the return
was made, one uses the subwindow and the
item to determine, first, in what subwindow the
event occurred and, second, what action should
be taken for this event.

QL 7oday

17

2 - RD_PTRT, timeouts and job events

The RD_PTRT keyword is pretty similar to the
RD_PTR keyword. Both use mostly the same
parameters, except that the RD_PTRT keyword
has one additinal parameter, a timeout, as follows:

RD_PTRT workdef, item%, subwin%, event3,
timeout%, xrel%, yrel%, liflags%
{[,appflags% [,ctrldefx% ,ctrldefy%]1}

The wordkdef, item%, xrel%, yrel%, liflags%,
appflags%, ctridefx% and ctridefy% parameters
are the same as for RD_PTR and thus don't
need to be described here anymore.

There are two changes with respect to the
RD_PTR keyword:

First of all, there is an additional timeout% para-
meter. With this you can indicate that you also
want a return from the keyword after a certain
time. In usual QL fashion, the timeout is given in
1/50th of a second (me thinks, in North America
it is in 1/60th of a second).

Thus, you can also make sure that you return
from the read pointer loop after a certain period
of inactivity. Mind, though, that the return will be
made either because of a 'normal” event (includ-
ing "job events, which [l explain below) or be-
cause of a timeout - whatever comes first!

When a return from a timeout occurs, the event
parameter is set to -1, which is a value it doen't
normally have. This allows you to distinguish
between normal events and a timeout.

Speaking of the event% parameter, this has been
modified a bit. It still has all of the functions as for
the RD_PTR keyword, but has been extended.
You can also use it as an entry paramter for the
RD_PTRT command, to pass it some ’job
events” on which the keyword will also return.

Job events are a relatively recent addition to the
Pointer Environment. They are an easy, legal and
(now) documented way for one job (program) to
communicate with another One program can
send another an "event’. The other program re-
ceives the event through the read pointer loop.
There are 8 events, contained in one byte, each
bit representing one event,

Sending an event is pretty easy and uses the

typical TK Il fashion of determining a job:

SEND_EVENT job_id,event

(the job_id is a composite number: job_tag *
65536 + job_nbr),

or

SEND_EVENT "job_name", event

or

SEND_EVENT jb_nbr, job_tag,event

For example:

SEND_EVENT "Quill",3

will send events 1 and 2 to Quill. This wouldn't
mean a lot, since Quill isn't equipped to receive
events, but it could be done.

When the program is a pointer program, it wil
receive the event throught the pointer read loop.
In S*Basic, this event may cause a return from
the pointer read loop: "May™ not "will" - at least not
necessarily.

Indeed, the event% parameter will indicate, on
entry to the command, what job events the
program is ready to receive. If the event%
parameter is 0, it is not ready to receive any
event. If event% =1 * 256, it is ready to receive
event 1, if it is 3 * 256, the program is ready to
receive events 1 & 2 and so on.

As you can see, the event is passed in the high
byte of the event% word, thus just multiply the
events to indicate by 256. There is one problem:
if you want to indicate that you are ready to
receive all 8 events, you would normally have to
pass 255*256. This will cause an error, so use -1
instead.

On return from the read pointer loop, the job
events are contained in the upper byte of the
event% word.

There is also a way to get an event without
reading the pointer:
result%=WAIT_EVENT (events% [,timeout%])

This will wait for timour% ticks (if this parameter is
not passed, it waits forever) untl on of the
evnts% passed on entry happens. The event(s)
are returned in result%

This was the easy way to read the pointer. Next
time, we'll look at a more circumvallated way of
doing this.

QL Forever!

18

QL 7oday

The menu colours are almost
entirely defined as $2xx sys-
tem colours, then you can
choose palette 0 to 3 and load
your favourite theme there
(using QCoCo or the Colour
Utilities Disk). You can change
colours while the program is
running. Also in mode 4 you
can now use the famiiar pa-
lettes known from QMenu and
Qpac?2. There is a small SBasic
program to set a system pa-
lette to the old Suqgcess co-
lours {and make all the other
applications look lke a Sug-
cess ;-)

One remaining snag is that the
scroll/pan arrows colour can
not be set. For that | made a
small procedure to set these

colours just before the applica-
tion window contents are
drawn, using;

MAWSETUP #ch\subw, ...

set colours in the Working

Definition:

MAWDRAW #ch, subw

Only the application window
border colour remains stubborn
and is set to a mode 4 "gray’
stipple, which should be ok for
most colour schemes.

The whole EasyPTR package
needs a big overhaul to bring it
to GD2 standard but with the
help from some experts we
managed to find a workaround
for most problems, except for
the "gray” stipple. Something to
do for the next update.

Compared to the previous Sug-
cess version 119 there is not
much functionality added to
version 2. You can now open a
database 'Read Only’, some
bugs were fixed, improvements
made in View, in Direct Sort and
to a few prompts. Every Loose
ltem now has a key attached to
it. Further changes were mostly
in the "looks™ department. Sug-
cess? only runs under SMSQ/E
3 because of the new colour
commands. A trial version can
be downloaded from Wolf-
gang's site:

www.uhlich.nl/gl/

Full versions can be obtained
from Jochen Merz Software.
They come in English, German
and Dutch flavours.

Programming QPTR in

S*Basic
(Part 10)

OK now).
Wolfgang Lenerz

- ¥ end% is a variable that determines under
what conditions this command returns to

the programmer. The conditions are deter-
mined by setting individual bits in this varia-
ble to 1, according to what one wishes.
The following table contains the return

(It seems we somehow lost track of the part g:oqditions, If the corresponding bit s set
0L

numbering in previous issues, but 10 should be

Bit set return if:

tol

We follow on from the last instalment by
examining, this time, a more convoluted way, even
if it is a "direct pointer read’

Il - READING THE POINTER DIRECTLY
With this command the pointer can be read at any
time and the return from the command can be
either immediately, or at the occurrence of a
certain event, as specified by the programmer
Contrary to the RD_PTR command that we saw
last time, there is only one command, RPTR (no
'RPTRT’). However, RPTR also takes into account
job events. This command (Read PoinfeR) takes
the following parameters:

RPTR xabs%, yabs%, end%, winnum%, yrel%,
yrel%, return$

0 a keyboard key, or a mouse button is

1

[GS W)

~N o

pressed

keyb. key or mouse button continues
to be pressed

the key or button is released

the pointer moves away from the
given coordinates

the pointer is, or moves out of the
window

the pointer is in, or moves into, the
window

NEVER set to 1!

"special” mode

Most return conditions may be mixed
together at your heart's content: if you set
both bits 4 and 5 to 1, then the command
will return immediately because the pointer
IS always either in or ouside of the window!

36

QL 7oday

You may set any individual bit in this
variable to 1 by first setting the entire
variable to 0 and then adding 2°x to this
variable, where x is the position of the bit
in the variable. If | add 274 (=16) | set bit 4
to 1. So, by adding 48 (=16 + 32 = 274
+2°5) | set bits 4 and 5. Of course, you
must add this only ONCE for each bit.

The "special mode” which is chosen when
bit 7 is set, will lock all windows of all other
jobs and show a special sprite, which can
be:

- the change size sprite, if bit 1 is also
settol

- the 'move window" sprite if bits 1 and
0 are both 1

- the "empty window" sprite if both bits 1
and O are set to 0

When bit 7 is set to 1, all other bits [except
0 and 1) should be set to 1.

This parameter is also used to set the job
events on which one wishes the program
to return. We discussed the job events last
time, please refer to the last instalment of
this series.

The job events are included in the high
byte of the end% word. To set any of these
events, proceed as above (2°x where X is
the event number, from O to 7) but then
multiply that value by 256. (Note: from
S*Bazic, you can only set the first 7 events
(0-6) and not event nbr 7, as that would be
exceed the value of an integer in S*Basic.
You would need to use a negative number
for that). So, to set job event n” 2, I'd add
{2°2)%256 to end end% variable.

= ¥ winnum% contains the number for the main

window (=-1) or the number of the applica-
tion subwindow to which the pointer read
should apply (especially to know whether
the pointer is in the (sub-)window or not).

- % xrel% and yrel%, which are return parame-

ters, contain, on return, the pointer coordi-
nates in the window or in the application
sub-window in which the pointer was when
the command returned.

They are both relative to the origin (upper

left hand corner) of this window or applica-
tion sub-window.

— * xabs% and yabs% are used when bit 3 of
end% is set to 1. They then contain the
ABSOLUTE pointer position - when the
pointer moves from this position, the
command will then return.

These parameters also contain, on return,
the absolute position of the pointer (in all
circumstances). Again, this is relative to the
screen origin (Upper left hand corner).

— * return$, another return parameter, contains
the character code (chr$) of the key
pressed, or one of the following values,
with the following meaning:

Key _ content of return$ CHR$ Meaning

none 0 no key pressed

SPACE/left button 1 Hit

ENTER/right button 2 Do

ESC 3 cancel

F1 4 Help

CTRL F4 5 Move window

CTRL F3 6 Change window
size

CTRL F1 7 Sleep

CTRL F2 8 Wake

Thus, with this command, you can also read the
pointer Its disadvantage is that it doesn't take into
account any loose items etc.. It is thus more
difficult to use than the RD_PTR command and
doesnt use all of the facilities offered by the
Pointer Environment.

That's it for today. If you've been following this
series continuousy, you should now have a firm
grasp of the concepts used by the Pointer Envi-
ronment, and also how to use them from S*Basic.

Next time, we'll look at some additional keywords,
which will probably conclude this series.

QL 7oday

37

Programming QPTR in
SBASIC - Last part

W. Lenerz

Additional Commands

The QPTR extensions contain some additional
S*Basic keywords, as follows:

| - Commands for the mouse and the
hotkey system

Several keywords are concerned with the mouse
and access to the hotkey system.

A - Accessing Hotkey System i

The hotkey system is closely linked to the
Pointer Environment and two commands give
you some access {o it.

1) Filing the Hotkey buffer

The hotkey buffer (also called "stuffer buffer’} is a
small buffer that you can fill with strings which
you can then get at by hitting the hotkeys ALT +
SPACE (or ALT + SHIFT + SPACE) together. This,
however, is only possible once the Hotkey job is
running, which is achieved via the HOT_GO
command of Hotkey System Il (if you don't have
the HOT_GO command, then you are stil using
Hotkey System | - an immediate upgrade is really
necessary).

As soon as the hotkey is hit, the content of the
stuffer buffer will be stuffed (hence the name)
into the current keyboard queue (just as if you
had used the old TK Il Altkey system - please
note that Hotkey System I will get rid of the
Altkey used by TK Il else too many routines
would compete for access to the Altkeys). The
effect is that the string appears as if you had
input it via the keyboard.

The stuffer buffer can also be filed by other
programs: thus QPAC2's FILES menu puts the
names of files selected into the stuffer buffer. So
does QD with the names of the files saved/
loaded. FiFi can also do this, and so can others ||
would really like this to be a configurable feature
of every program, though). Recent versions of
SMSQ/E will also put a string currently being
edited with the INPUT command, or by programs

using the edit line” trap, into the stuffer buffer
whenever F10 is hit during editing.

With the HOT_STUFF command, you can explicit-
ly put a string into the stuffer buffer The syntax
of this command is:

HOT_STUFF a$

a$ is the string to be put into the buffer. You can
put several strings in there by passing them as
parameters separated by commas:

HOT_STUFF a$,b$,c$,d$. ...

the string a$ will be put into the buffer first

2) Picking a job

You now know that jobs (or their windows) are
organized in a stack. The job the window of
which is on top of the stack will have its window
unlocked. With the PICK function, you can bring a
job to the top, where its window will be visible
and unlocked. This is like a repeated CTRL +C,
but more targeted to a specific job. Instead of
just cycling through all jobs as does CTRL + C,
you can PICK any specific job you want.

The syntax of this function is:

PICK ([#channel,] JobID) or
PICK ([#channel,] key)

result
result

[

As usual, if you do not specify a channel number
channel #1 will be taken as default.

The job ID can be specified as "job number, job
tag’, which is what is returned by the TK Il JOBS
command. You may also use a single number:
Job_tag %65536 + job_number

The "key” may be -1 or -2.1f you use a key of -1,
then the job at the bottommost place wil be
picked to the top. If you give -2 as key, then the
same thing happens, but the window of that job
will be marked as unlockable: its output will a-
ways be visible as soon as it changes.

B - Mouse commands

1 = Filing the mouse buffer

In a similar way that we have a Hotkey System |
stuffer buffer, there is also a mouse buffer - but
this is severely more limited. Indeed, the buffer

32

QL Today

holds only two characters at the most. It can be
filled with the MS_HOT command.

The content of the mouse buffer may be re-
trieved by clicking both mouse buttons at the
same time - this buffer thus is only for those that
do have a mouse..

The syntax of this command is:
MS_HOT [#channel,],a$

where a$ is a siring of two characters at the
most.

As usual, the channel number will default to #1 if
you do not specify it.

If you pass an empty string then clicking both
mouse buttons at the same time will no longer
have any effect at all

The interesting thing about the mouse buffer
(and this is contrary to the stuffer buffer) is that
the mouse buffer is polled before the Hotkey/
Altkey routines poll the keyboard. Practically, this
means that you may use the mouse buffer cha-
racter to set off a hotkey — when you click both
mouse buttons, this behaves as if you had hit the
corresponding hotkey. To achieve this, though,
you must fil the mouse buffer with two charac-
ters, the first must correspond to the ALT key (ie.
CHR$(255)) and the second to the Hotkey you
wish to activate.

2) Changing mouse speed and wake up

You may change the mouse speed and wake up
time.

The mouse speed (or "acceleration’) determines
how far the mouse pointer moves on the screen
whenever you move the mouse on your desk (or
whatever). Grossly: if the speed is high, the poin-
ter moves a lot with a feeble mouse movement. If
the speed is low, the pointer moves less and you
need to move the mouse a lot further to move
the pointer on the screen. The speed also com-
mands the gradual acceleration of the mouse
pointer when the pointer is moved via the cursor
keys rather than the mouse.

The mouse "wake up” is the mouse movement
that is necessary to show the pointer on the
screen when the pointer isn't already visible, for

example if it is in a window that is waiting for
keyboard input (blinking cursor). This can be
easily seen in a Basic input window. The pointer
normally isn't visible in that window, it becomes
visible when you move the mouse. Ty it, you will
see what | mean.

The command for this is MS_SPD and its syntax
1S

MS_SPD acceleration [,wake_ up]

Both parameters range from 0 to 9 and the wake
up parameter is an optional parameter.

You can also use the QPAC Il "SYSDEF" menu

and see how these two parameters change the
behaviour of the mouse.

Il - Commands for Blobs and Patterns.

Blobs and patterns were already defined in an
earlier instalment of this series, please refer there
if in doubt.

There are several commands which make the
use and creation of blobs and patterns a bit
easier:

A - Pattern creation

Here is a command that is useful to create a
pattern of a bit more complicated design. Indeed,
you may wish to design an image (for example
with a painting program) and convert it into a
pattern later on. This is pretty nifty as you don't
have to care about how to make a pattern in the
more complicated way. The command for this is
MKPAL

MKPAT address,buffer

- % buffer is a buffer holding the painting,
which was created, for example, with the
PSAVE function (which was already
covered in this series). The content of this
buffer will be transformed into a pattern
which will be put at address.

- % address Is the address in memory where
the image converted into a pattern wil lie.
You must have reserved this address (for
example with RESPR or ALCHP) and have
enough space at the address for the resul-

QL 7oday

33

ting pattern {including the header). This ad-
dress can then be used whenever you
need a pattern.

Thus note that you need to know the memory
size for the pattern before you start this opera-
tion. You can get to know the necessary size by
using the SPRSP function which we already have
seen in an earlier instalment of this series - just
use the x size of the buffer and half of the y size
of the "buffer’ - and then add 18 to take into
acount the header.

The pattern {and the image in the buffer) must be
at least 16 pixels wide (and the pattern will
normally be cut to a length that is a multiple of 16
pixels).

B - Writing blobs and patterns

Once you have created a blob and a pattern you
can "write” them out 1o the screen, ie. have them
appear anywhere you want. Please be reminded
that a blob without a pattern, and a pattern
without a blob are invisible.

1) WBLOB

This command writes a blob (Write BLOB) with
its corresponding pattern to specific screen
coordinates:

WBLOB [#channel,]x, y, blob, pattern

- * obviously, x and y are the screen coordi-
nates where the blob is to be written. 0.0
is the top left hand, and these coordinates
are in pixels, relative to the window origin
of the channel given as parameter

- % blob and pattern are, of course the poin-
ters to the memory addresses where you
can find the blob and pattern to be written
out.

As usual, the channel parameter will default to #1
if it isn't specified. The blobs and patterns are
written into the channel window at the specified
coordinates. If the coordinates are outside the
window, there is no error but the blobs and
patterns will not be drawn. Pattern should be a
multiple pf 16 pixels wide. Some (pretty old)
versions of the Pointer Interface do NOT check
whether the parameters are really blobs and

patterns - if they aren't there is a good chance
that the machine will crash. Hence — make sure!

2)LBLOB

The LBLOB (Line of BLOBs) command allows you
to print one or several lines of blobs on the
screen:

LBLOB [#channel,] xpos, ypos, blob, pattern

- % xpos and ypos are the screen coordi
nates. You may combine them with the TO
operator:
xpos,ypos TO xlpos,ylpos (TO
x2pos, y2pos ete)
just like you would with the S*Basic LINE
command.

- % blob and pattern, are the same pointers
to blobs and patterns as described above.

3) SPRAY

This interesting little command is like WBLOB, but
instead of writing an entire blob, it only writes out
a random number of pixels of it. This is really only
necessary in some kind of painting program,
where, instead of drawing a continouous line, you
would want to write out a more diffuse line. The
‘pencil’ thus just leave a spray of pixels (hence
the name) with a diffuse line.

SPRAY x, y, blob, pattern, pixels

- % the first four parameters are like for
WBLOB.

- * Pixels: This parameter gives the (approxi-
mate) number of quantity of pixels that will
be drawn. However, even if you paint
several times over the same place with the
same pixel, you will not be sure that the
entire blob will be drawn out (after all, you
have WBLOB for thatl)

This concludes this little series on QPTR. | hope
you have enjoyed it more than | have...

34

QL 7oday

