
710 IF MTEXT$(#3,key),' ""724 NEXT nain
734 ELSE
740 IF awnum=l
7r0 nanes$(position)=buffer$
760 Er,sE
770 selection$(positi-on)=buffer$
7BO END IF
79A MALIITEM #3,key,,bufferg
800 buffer$=ttrt
810 dragl=591(draq%)
820 SPRS #3,0
B3O END IF
B4O EISE
BrA IF MTEXT$(#3,key),, ""860 fF awnum=l
870 buffer$=names$(position)
BB0 names$(position) -tttt
B9O ELSE
900 buffer$=selection$ (positlon)
910 selection$(position)=n't
q2N T'ilIT] TT'

%A MAI,IITEM #3rkey,,ttu
940 dragl=1rJ61(drae%)
9ro SPRS #3,1
960 ELSE
970 NEXT main
980 END IF
990 END IF
1000 END DEFine DRAG_IROP
1010 :

1020 DEFine PROCedure SHOI,ITIIvIE
1030 L0Ca1 number
10/+0 number=MAI,tNIJM (#3\j)
1050 operr-over #1 rram1*showtime
1060 print #4r,,In week "&number
1070 print #4r,,the following players were selected:fr
1080 print #4,se1eetiong
1090 close #/+

1100 END DEFine SH0WTIME

The Extended Environ-
ment in SBASICI Prograrn-
ming with QPTR
Wolfgang Lenerz

This is the new Guide to using QPTR in Super-
BASIC. The purpose hereof is to enable you lo
program the "Extended Environmenl" - so
called the tPointer Environment) very easily
with the QPTR exlensions (which you must
obtain seperately). Contrary to what a first
impression may let you believe, the Exlended
Environment, and QPTR at lhe same time, are
nol complicated or difficult, but just complex,

notably because there are so many new
concepts lo assimilate at once. But it is actually
sufficienl to know and respect its "philosophy"
to see - and understand - lhe logic behind it.

I sincerely hope this Guide will be useful to you.

lntroduction

This is an explanation of the concepts and key-
words needed to program applications using the
QPTR SuperBASlC extensions. For some as-
pects, we will use examples derived from QPAC
ll, it is thus hoped that the reader is familiar with
this software...

46 8,|lodoy

Before starting on the course propel some terms
might need an explanation'

The Exlended Environment essentially is just a
"new" method to interact with the user of an
application:
lnteraction means, on the one hand, display of
information on the screen (in windows) and, on
the other hand, obtaining the user's response to
thrs information (often, but not always, through a
'pointer'). For example, a file copier displays infor-
mation (the name of files on a disk) and obtains
the user's response {i.e. selecting which files to
copy). The Extended Environment {which I'll ab-
breviate as EE from here on) can handle that
aspect of a program, but the rest of the program
willremain (nearly) unchanged:in the example just
used, it is still you, the programmer who will have
to program the copying operation itself

An application is simple a program

A window is said to be managed when it is part
of an application written specifically to take
advantage of the facilities offered by the EE,

QPAC ll has managed windows, QUILL has
windows that are not managed.

The EE changes not only several aspects of the
QL's windowing system, but also the QL's
multitasking. Here, the concept of a window rs

enlarged to mean not only the means through
which an application will communicale with the
user but also the means to determine whether
an application will multitask or will be suspended.

The best way to understand that is to imagine
that, for the EE, all window are"stacked"on a pile

{one considers that an application has bul one
main window). The window that is on top of the
pile is that which is entirely visible on the screen.
This window is said to be unlocked which means
that it will accept input if you type something in it
and if the mouse pointer is over it lf you now hit
CTRL + C, then the window on the top of the pile
will get transferred to the bottum of the pile, and
the window that was just under that one will be
on top of the pile. Now if the pointer is in that
window anything you type (or any click of the
mouse) will be directed to that window and is
thus taken into account by the application to
which that window belongs. The window on top
of the pile will be called the upper window The
other windows, which are underneath it, do not
accept keystrokes lt is then said that thay are
locked

It is possible for two or more windows to be on
top of the pile at the same time, and to be visible
entirely {if they are small enough..). Both windows
will then be unlocked However: if anything is
typed on the keyboard, the keystrokes thus
generated go only to the window in which one
can see the pointer:

The concept of locked windows is important, An
application whose window is locked will be sus-
pended (i.e. it stops working) until its window be-
comes unlocked lF this application either at-
tempts to write to the screen or is waiting for
user input. Example' You are working in Abacus,
and ask it to recalculate a large speadsheet. As
soon as Abacus starts to do that, you switch to
Basic Abacus will continue to work on the
spreadsheet, until it has to display the recalcula-
ted sheet. Then it will stop cold, waiting for you
to switch back to it (thus unlocking it window)
Until then, Abacus is suspended

The word pointer can have two meanings: first of
all it can mean the concept of a pointer as used
in all programmming languages, i.e. a variable
pointing to something Also, it can mean a poin-
ter (cursor) on the screen, moved about by the
mouse or cursor keys. One doesn't generally use
the word 'cursor' because that normally ony
means a rectagular square (blinking or not),

whereas a pointer can have about any shape
you desre. Normally it should be quite clear from
the context which meaning of the word pointer is
used, without any possibility of confusion

The mouse pointer can be used to 'hit'oblects
or 'do' these objects, a "Hit' is either a click o{
the left mouse button or tapping the space bar A
'Do'is either a click with the right mouse button,
or tapping the ENTTR key

An application will have a main (or "primary'j

window through which it communicates with the
user Generally this window will be divided into
"sub-windows". These sub-windows are but sub'
divisions of the main window Thus, in QPAC ll, for
example, the primary window of the"Files" menu
is the entire window visible The part of the
window which displays the file names is a

sub-window
Some sub-windows are a bit special in that they
can have 'oblects' {such as the file names in the
QPAC ll files menu) The state of the objects can
change when hit or"done'and can even produce
an action. The sub-windows are called applica-
lion sub-windows

re QL Todoy 47-

Programs using QPTR can also be compiled
Howeve[you have to use the Qliberation Soft-
ware's Qliberator for this, as the'Turbo"compiler
cannot cope with functions and commands
which return changed parameters (even thought
this is explicitly foreseen for Basic keywords) As
an importnt number of QPTR keywords use this
feature, programs written with them cannot be
compiled with'Turbo'

A program written for the EE will most likely
follow the following procedure,

c Definition of window{s)
r Display of windows onscreen
o Waiting for user inpul
o Act on user input
o (perhaps) Re-define windows and display it
c Wait for user input etc...

This is in fact not far from'classical'programming,
QUILI doesn't do anthing else than display its
windows, wait for user input, act on that etc...

Each of these stages will be discussed. The
most difficult and important is the first stage, lhe
definition of the window

Part One: Defining the !(indow

We wish of course, to define windows which are
managed. To this end, there are rules to be
obeyed, the definition must be made in a deter-
mined manne[which may seem complicated at
first To obtain this global definition of the window
there are several levels of definition through
which you will successively have to pass: You
must frrst define the main window then the
different sub-windows and lists

l- LEVEL ll Definition of the primary window

A - Some new concepts

A certain number of new concepts must be set
out before we can examine the new keywords.

1) The primarv window
The primary window of an application is terribly
important. Put simply, it is the first window to be
opened for an application - but it determines the
graphical aspect of the entire application This is

why it is called the primary windaw: Primary not
only because it is the first to be opened, but also
because it primes all the others.

The primary window is paramount: your applica-
tion is not allowed lo open any other window
outside the primay window!

2) The sub-windows
As we shall see, and as was already mentioned,
the primary window itself is generally broken
down into sub-windows. There are different kinds
of sub-windows, each doing it's own bit. NONI of
the sub-windows' sizes may exceed the size of
the primary window they must all be opened
within their primary. Even if you attempted
otherwise, the tE would not let you {!).

There are three types of sub-windows:

" The information sub-windows which just dis-
play some information, as their name suggests.

. The application sub-undows - they can be so
diverse that it is difficult to give a precise de-
scription.

" The menu sub-windows, these are a special
case of application sub-window, containing
"objects'.

3l Menu items
ln addition to sub-windows, primary windows may
also have "loose menu items' {sometimes also
called simply 'menu items"). These can change
state or produce an aclion when hit or 'done',

and, if the pointer moves over them, a border is
drawn around them.

To understand these three components, let's look
at the QPAC ll "Files'fir€nu:

We can see the first sub-window containing the
file names, at a first glance This is a menu sub-
window (the file names are its objects).
We also notice the menu items, such as F3, Com-
mands, F5 All etc..
The "stripes"around the device name, are drawn
within an information sub-window Likewise, the
data on the device ({ree sectorsi total sectors)
are displyed within an information sub-window.
It should be noted that none of these sub-win-
dows is a"window"in the QL sense (i.e having its
own SCR or CON channel), even if they behave
like such This can be seen from lhe "Channels'

flenu: the 'Files' menu has but one screen chan-
nel open...

4) Secondarv windows
Sometimes it is necessary to have additional win-
dows which are true QL windows, with their own
channel These will generally be secondary win-
dows.

48 QL loday

Secondary windows are defined, and behave,
exactly like primary windows (i,e they have their
own sub-windows, menu items etc .) BUT these
secondary windows are all confined within the
primary window whose size they may not ex-
ceed Simply put, an application may not display
anything outside its primary (but it rs possible to
make the prirnay bigger if need be).

An example of a secondary window: in the QPAC
ll Files window, hit F3. This opens another win-
dow, which itself has menu ilems This other win-
dow is a secondary window it has its own CON-
channel, as you can see when checking through
'Channels'.

It is of course possible to open a new secondary
window within a first secondary window (no,

they're not called tertiary windows...). This can be
useful if you wish to have a cascade of menus, a
first menu leads to a second one, which in turn
leads to another ete... {it rs not, howevel
considered to be good programming style to use
too many cascading menus).
Whilst any secondary window is, of course,
limited to the size of the primary, a secondary
window within another secondary window is
NOT limited to the size of the first secondary
window - else, successive menus would have to
get progressively smaller!
ln briel an [E application has two kinds o{ win-
dows, one primary window (possibly with sub-
windows) and, possibly, one or several secon-
dary windows. Each may have its own loose
menu, and sub-windows.
The difference between a menu, whether it is a
loose menu or the objects in a menu sub-window
on the one hand, and a sub-windowon the other
hand, is the fact that clicking on an item in a

menu will lead to a result. This may just be to
select the item {e,g. F4 - view in the QPAC ll Files
menu) or lead to some kind of action te g. F3 in

the QPAC ll Files menu), Clicking on a sub-win-
dow in itself generally produces no results (there

is one exception to which we will come later)

5) The working_definition
To conslruct a primary window you will need to
build up a 'working definition" of this window
Let's take an example with"normal'SuperBASlC
You can open a window just by typing,
"OPENs3,con-". You have then opened a window.
Howeve[to really define this window you would
then define ils size and position

{W|NDOWn3,x,y,z,p), its colours (border, paper ink)
etc. Thus you will build up an exacl definition of
your window with all your parameters.

Likewise, in the EE, you make a definition of the
window according to your parameters, Here,
howeve[this defintion, ie. the "working definition"
is more complex and it is compulsory you
cannot do without it

B - Making lhe_Wsrkrng lelinilisn

The working definition of the primary window is
built up by the following function, MK-WDEF
{MaKe Working DEEinition).

workde f = MK-I,IDEF (w def /", w attr/", uptr, 1tab,
inftab, apptab)

'workdef'then becomes a pointer to the working
definition of the window The parameters to this
function are as follows'

-,* wdef% is an array containing the "physical'

definition of the window
ln other words, it is a 4 element integer array
(DlM wdefTo(3)) lts elements are, in this order'
-window x size
- window y size
- x position of pointer when the window is drawn
- y position of pointer when window rs drawn.

The pointer posilion rs given as the number
of pixels starting from the upper left hand
corner of the window which is considered to
be at coordinates (0,0)

'' * wattrYo is an array containing the window
'attributes". These "attributes' are simply the
following' window paper (& stripi colour; size
and colour of the window border and size of
the shadow beneath the window in the fol-
lowing order'

-size of shadow
- size of border
- colour of border
-paper colour

So, there again, this is an integer array with 4
elements (DlM wattr%{3)).
The last three parameters should be clear to
anyone concerned. The "srze of the shadow"
is given in pixels [but is multiplied by 2 by the
software, to have even numbers). The sha-
dow counts for the size of the window, On a
normal QL, you could not have a window
512x256 pixels wide plus a shadow this
would make the window too large A shadow
size of 2 is generally thought to be sufficient

50 QL lodoy

-' * wplr, ltab, inftab, apptab are level ll "pointers'

(ie. they are explained in level ll)'
- wptr is a pointer {generally obtained by

SPRSP) towards a sprite definition.
- ltab is a pointer to a loose menu items list,

as returned by the MK-LIL function'
Itab=MK-LlL {level ll parameters}.

- inftab is a pointer towards an inlormation
sub-window list, as returned by the
MK*IWL function,
inftab=MK-IWL {level ll parameters)

- apptab is a pointer towards an application
sub-window list, as returned by the
MK-AWL function'
apptab=MK-AWL(Level ll parameters).

Each of the last 4 pointers may be set to 0 ln

this case, it is considered that the list to which it
points does not exist: if inftab = 0, there are no
information sub-windows.

AITENTION: lt is important to respect the types
of variables' if a variable is expected to be an
integet or an integer array, the variable MUST be
of the correct type. Else, al best, the function in

which it is used willgive up with an erro[at worst
very bizzarre things may happen..

We'll continue with level ll functions in the next
instalment of this series

Sinclair QL CSYNC lnverter
Marcel Flipse

The QL cannol be connected
to a CGA monitor directly This
is because the QL has an

aclive-low Csync pin. A CGA
monitor expects an active-high
signal This document shows
how to make a very little circuit
board, which inverts the Csync
pin No additional power supply
is needed The PCB is small

l-jere are scme pictures of the caliie

enough to fit inside a DB-9 connector:

The urcuit is straightforward. The Csync signal is

fed through a single gate NAND, which acts as
the inverter The NAND gate is powered by the
Csync signal itself Energy is stored in a 10uF tan-
talum capacitor to buffer the time the Csync

f,,1 F*s: -lS,tllilLs iRl**EF1 Tek

j i,iur*e
HEH

,

r TUgdi r;:wt

, l- trl.jfrlillq"iw
fl-|1 \ i,4riv

Hcr* y6x c&n Ecr tlic 'originai' Csy;ii signai,
rn**sur*d riireiily *t fhl. E-pi* Dllil r&*ftrjcl&r

at tlic. rcar cf ihc eL.

signal is low. A 100 ohm resistor is added to limit
the inrush current during power-up. Some
additional resistors and S0T-23 transient
suppressors are added for extra protection of
the QL.

Tsh .fL & i;10tr,

i'"""'" 'l 'i"+."
i ::
l:l1i

&::{'rP';''i' '+''
l''1 P*ri

.13,ltltjrs

I ffi
ucLut

i tJid*rt

liiop*
ffiffi

I

rjllT J,ILtiJ

:nv*ft*d siqnal

i \riC*,r

l

r ,jx#*+ igillllgj

!uur**
r LE&$J

QL lodoy 51

SMSQIE machine you will be
perfectly happy with either The
Q60 is a great choice for
someone who just wants the
best possible QL system or a
QL and Linux, especially if you
dislike Windows
By the time you read this re-

view, D&D will have sold out

the entire first production run of
Q60s and planning if not al-
ready selling the next run. Wrth
a machine of this calibre and
with the dedication of people
like Dennis Smith and Derek
Stewart and the full support of
designer Peter Graf, I am 100%

convinced this machine will be

a certain success, it really de-
serves to be. I have no hesita-
tion in recornmending this com-
puter - every QLer should
have onel lf I'd had enough
noney io hand when it came
to the time to hand it back, I'd

have bought this machine with-
out hesitation.

Programming with QPTR
- Pa rt2
Wolfgang Lenerz

Continuing on from last time's instalment, here is

the new part of the series on how to use QPTR
As usual, any comments are welcome.

ll - LEVEL ll: Definition of the lists and sprites

lf you want a window to look at least somewhat
interesting, you will have to dress it up a bit - so
the Level llpointers should not all be 0, but should,
indeed, point to something. This is what is done
by the level ll functions, Level ll defines the (poin-

ter and other) sprites and sub'window lists

A-The Sorites, 'wotr"

Contrary to games compulers, here a 'Sprite'is
just a kind of image visible on the screen, which is

not "independently animated" The most typical
example would of course be the mouse pointer:

This is a sprite, directed over the screen by a

mouse or the cursor keys. lt can be an arrow or a
cross {as in FiFi} or almost anything. A sprite can
also be an image that is not mobile - once it is

drawn it remains where it is. The mouse pointer
sprite is actually exceptional in that it can move
around the screen. For example of a more normal
sprite, the icon used to make a window move
around the screen is, in itsell a sprite {when hit,

the pointer changes to that sprite)

So, the pointer used by the application is a sprite.
[ach primary and secondary window can have its
own sprite - as can application sub-windows. ln

QD, the sprite is in the shape of a cursor (blinking

or not), in Disktool, it is in the shape of a disk, in

FiFi it has the shape of a cross etc . You will
notice that the pointer sprite "looses" rts specific
shape as soon as it leaves an application's prima-

ry window' as soon as you put the pointer over
another application, it takes lhe shape given to it

by that application - provided, of course, that the
application has managed windows and is un-
locked (of course, several applications may have
the same pointer sprite) The pointer over an
unmanaged and unlocked window is either an
arrow or a'K", depending on whether or nol lhe
application is waiting for a keystroke Locked
windows always have another defaull pointer a
padlock One cannot change these default
snritps

lf each application can have its own sprite as
pointer it means that each application must define
this sprite lf it doesn't (wptr=O) a pointer by
delault will be used, i,e the famous little arrow

The sprite definition is built in an area of mernory
which must previously have been reserved by the
RESPR or ALCHP (if you have loolkit ll) functions
wptr is then simply the address of this memory
3I03:

wptr=ALcuP(size) or wptr=FIESPR(size)

Now it "only' remains to find out how much me-
mory you should reserve (this is not a fixed
amount, it varies {rom sprite to sprite) - and then
you have to fillthe memory area with the data for
the sprite you wish to have

The size of this memory area depends strictly on
the size of the sprite' a small sprite will need less
memory than a large sprite - which seems quite
logical For the time being, sprites are limited to
64 pixels in each direction This may seem small,
but is actually not bad

Sprites are'printed'to the screen in a similar way
to characters, i.e. imagine a grid of columns and
rows, Each element, corresponding to one pixel
on the screen, can be either on or off - but here,
you can not only determine whether the pixel is

on or offl but also in what colour is should be 'on'

The size of the sprite thus depends on the
number of columns and rows. Suppose we want

QL foday 41

to define a sprites in a 10 by 10 grid (10 lines with
10 rows - 10x10 pixels) To define the sprite, we
read these rows and columns into an array The
array will be a normai SuperBasic string array
which, with a great leap of imagination, we shall
call "sprite$' in the examples For a 10 by 10

sprite, this array must be DlMensioned as follows,

DIM sprite$(e,fO; or more generally,

DIM sprite$ (rows-l, columns)

where rows and columns are the number of lines
and columns respectively. The "rows-1" is be-
cause the first dimension of a sprite is sprite${0}.
Thus, by using DIM sprite$(rows-l,columns)we do
get an array with the required number of lines and
columns.

That still doesn't tell us what value the 'size'

should be This can be obtained with the SPRSP

function (SPrite Reserve SPace), which is used as
follows,

size= SPRSP (columns, rows)

where, again, rows and columns are the number
of columns and lines Note the reverse order of
the parameters, columns first, rows second (this is

the other way round in the DIM statement)
So, attention'

* do not stale SPRSP (rows, columns), nor
SPRSP (columns, rows-l) - it's (columns, rows)!.

* you must double the number of columns if the
sprite is a mode 8 sprite, because, indeed, each
pixelis twice as large in that mode..,

Thus, to reserve sufficient memory you should
proceed as follows,

size= SPRSP (eolumnsrrows) :

address= RXSPR (size)

0r':

address= RESP? (SpnSp(columnsrrows))

to save on a variable (of course, RESPR can be
replaced by ALCHP)

Once enough memory is reserved, the sprite
needs to be defined. This is most easily obtained
by using the SPSET [SPrite SET) command'

SPSET address, orlx, ori3, mode, sprite$

address is the address obtained by the
RISPR, as mentioned above;

ori-x and ori-y are the x and y 'origins'

within the sprite lt may seem curious that a

sprite has origrns, as the sprite (if used as a
pointer), may freely move about the screen
and thus its origin changes every time
Actually, these are the origins within the
sprite' A sprite can be quite large, but there
must be one point as of which you consider
that the sprite is inside ol say an item or a
window' this is dertermined by the origin of
the sprite Suppose you have a sprite rn

shape of an arrow you may wish that the
point of the arrow should be the origin of
the sprite, as most people will use that to
point to the vaious options So you set the
origin of the sprite to be the point of the
ATTOW

mode is the colour mode in which the sprite
is to be drawn, 4 or I
sprite$ is the array we have defined
above {rows-l,columns).

Of course, this array must have been filled
in before using the SPSET command. This is

fortunately quite easy, Each row of the array
is made up as follows, using a white arrow
outlined in black as an example'

90 DATAr a t

100 DATA ? awa I

120 DATA I awwwa I

130 DATA fawawawar

1/+0 DATA I awa r

150 DATA t awa I

160 DATA t awa t

170 DA?A ' awa t

180 DATA I aaa I

Thus our array is filled in by a program such as
follows'

RESTORE 80
READ rowsrcolumns
DIM sprite$ (rows-l, columns)
FOR n=0 T0 rows

READ nydata$
sprite$ (n) =mYdata$

END FOR n
DATA 8r7 : rem the number of rows & cols
DATArar
DATA t awa I

-r*

-r*

-r*

-)*

10
2A

3A
40
50
60
7A

BO

90
100

42 QL lodoy

120 DATA I altwlla I

130 DATA rawwwwwat

140 DATA I awa I

1r0 DATA r awa I

160 DATA I awa I

170 DATA I awa I

180 DATA t aaa I

ln line 20, the number o{ rows and columns is read
in (the DATA in line B0) After that, the array is

DlMmed and the loop reads the strings from lines
90 to lB0, which are used to fillin the array. There
only remarns to explain the meaning of these
strings,

Let's start with line 90 tach character in this
string stands {or ONE PIXEL. Line 90 is thus the
uppermosl row of the sprite. lt is composed of
lhree spaces, an 'a' and again three spaces. Each
character has a special meaning: A space means
that this pixel will be'transparent": il will let shine
through whatever lies beneath this pixel of the
sprite An 'a' means that the pixel will be black
The letters for the other colours dre:

a - black
u-bluex
r-red
m - magenta *
g - green
c-cyanx
Y - Yellow x
w - while
space - "lransparent"

The colours marked with an asterisk ('*') can only
be used for mode B sprites,

ln our example, we can thus see that line 100 is

composed of two transparent pixels, a black
pixel, a white pixel, a black pixel and, again,

several transparent pixels ln fact, the black pixels
encase the white pixels. And so on for the other
lines - and now we have defined the sprite As of
now whenever we need the address of a sprite,
'wptr'will be a valid address we can use

More next time!

Qt Logo
Dilwyn Jones

Some time ago the idea of finding a logo {or the
QL was floated among the QL community Vari-

ous suggestions were made and as far as lknow
no real consensus was arrived at. Since then, I've
kept a page about this idea on my website and
there has been a slow but sure contribution of
ideas. Many of these might be suitable for
T-shirts, mouse mats, magazine logos, anything
which might help promote the QL Some of the
ideas contributed are traditionalQL symbols such
as the famliar red, white and black QL screen,
others are much more colourful and perhaps

more representative of the modern QL world.
My hope was that we could come up with
something everyone would associate with the
QL, in much the same way as the penguin symbol
is with Linux As far as my original idea was
concerned, the best symbol of the QL is either a
QL picture, or the red and white startup screen,
or the letters 'QL', or the logo moulded on the
original QL casel So here is my first proposal. As
far as I'm concerned, anyone can use this to
make a QL T-shirt or whatever - it's a GIF file of
512x256 pixel dimensions just like the startup QL
screen, with the letters QL added in the chunky
QL screen fount See figure 1

Branko Badrlijka has sent me his suggestion, a
plain and simple QL monitor screen which makes
for a very small graphics file which is easily
resized without affecting detail
He also suggests that a moderately thick black
border may aid appearance on certain back-
grounds.

44 QLloday

Paragraph word processor from F Lanciault.

BMP2PIC - file conversion program from
Phoebus Dokos, converts windows BMP files
into QL PIC files.

PhotoQL - Roberto Porro's graphics conversion
program.

Pnm2picr t040) - available from the Q40 web
site, ldon't know much about this program.

PIC2BMP - conversion prograrn from Jerome
Grimbert.

Q-Colour. Colour picker and display syslem from
Wolfgang Uhlig, includes the colour "skins'

extensions from Wolfgang Lenerz.

Sprite Edilor - from Jerome Grimbert.

QL3D1 - from Mark Swift?

PSA conversion from George Gwilt, converts
partial save area files between Q40/Q60

mode 33 style graphics to mode 32 style
graphics.

PCBCad from Malcolm Lear PCB/design
program.

Screen Snatcher * grab copies of the screen
picture, works on both traditional QL mode
4/B graphics plus the new modes.

PicView * image file viewer for QL screens and
PIC files

QCDEZE from Duncan Neithercutt is a CD-ROM
handler front end which uses GD2 graphics
on Q40/Q60 systems.

Pan and Scroll Toolkit from Wolfgang Lenerz,
available on the Phoebus Dokos website.

QDT - the QL desktop syslem from Jim Hunkins.

Anyone know of any more? I may update this
article from time to time.

Flcrtrer nr lsa . ^'llL nhTFtrru5lolrilrilt 15 wrLr r \{r r N -

Pa ft 3 tn, Levet tt pointers, continued

Wolfgang Lenerz

Again we continue our exploralion of QPTR. You
may remember that lo make a window under the
Extended Environment with the Sbasic QPTR
toolkit, you need a working definition, and that the
working definition is obtained by the function
MK-WDEF, thus'
workdef = MIrt_WDEF(wdef%,w attrf ,wptr, ltab
, inftab, apptab)

Here, wtpr ltab, inftab and apptab are'levelll poin-
ters'. ln the last instalment, we stopped at these
levelll pointers, and more specifically after having
explained "wptr', the pointer lowards a sprite
definition, sprite which will be used in the window
for the mouse pointer We now know how to
define sprites.

So let's have a closer look at the other Level ll

pointers, and first 'ltab', the loose items table, or
pointer towards the loose menu itmes list

B- The "loose menu" itenslis!

or: 0f menus and items.

The concepl of a"menu'probably does not need
much more explanation:d mot"tu is just a sel of op-
tions proposed to the user who makes his choice
either by hilting a key corresponding to the op-
lion, or by clicking on the option with the mouse.

An 'ilem"of a menu is simply one of the choices
of that menu. ln older programs (such as Quill), a

menu is displayed as a regular list, such as:

Fl = action 1

F2 = action 2
ro - ^^r;^* aro - cil.ltult o
F4 = action 4

and so on. This kind of menu, whilst regular, is also
boring as it is generally bundled closely together
in the window, and it is difficult to show at the
same time, other information in addition to the
menu choices. lt would be nice to have the menu
ilems anywhere in the window instead of having
them in a regular grid as shown above.

This is what a 'loose' menu allows us to do As
the term implies, the items ol such a menu are
'loose', i.e. can be anywhere in the window, they
don't have to be in a rectangular grid * but they
are still part of the same menu. The advantage is
that, whilst the rtems are part of a regular
structure {and thus easily recognizable), they are
also placed where they can be used to best
effect. The structure of the menu is regular in that
the items willhave the same appearance, but the
items do not appear one after the other in the
window. This is why it is a"loose menu".

When you define a loose menu for the window,
you will have to define what each menu rtem in

this menu is and does. Also, as the ilems are part
of lhe same menu, they will have some
properties in common {their general appearance).
Some other properties will depend on each item

@Llodey 4V

{such as the key which actions each item - it

would be unfortunate if that were the same for
each item). You must determine all of that

The common properties are those that define the
general aspect of the items, what colour is used
as the "paper"or "ink' to display the items, whal
type of border they will have, etc. Take for
example the QPAC2 "Files" window' the menu
choices offered {Command, View All, ESC and so
on) have the same general aspect (same colour
same ink, same papet; same border colour when
the pointer is in them etc...): they are all items of
the same loose menu They all change similarly
when actioned or when the pointer moves over
them. So they all change 'slatus' in a similar
manner Let's take a closer look, frrst, at ilem
'slatuses'.

I - ltem Slatuses

Actually loose menu items can have four ditferent
slatuses: The first status, is simply that ol a

normalitem which you can hit or do lt is said that
this item is "available". The second stalus is

where, for any reason, you can neither "hit" nor
'do"the item: the item is'unavailable"and cannot
produce any aclion. The third status is that of an
item over which the pointer is just hovering, this is
now the current item, and a border is drawn
around it - i{ you HIT or DO in the window it will
be this item that is actioned. The last status is that
ol a selected item, which is what happens when
you hit an item and it stays emphasized - such as
the View item in QPAC2-Files.

The definition of the four statuses willbe common
to all items of a loose menu. This seems logical,
and avoids confusion, if red paper with black ink
meant thai one item was selected, but meant that
another item was unavailable, this would confuse
the user to no end, Thus, the delinition of the
colours used for these different staluses are the
same for all items. This provides the regularity
which enables the user to recognize loose menu
items instinctively as such

To each stalus for the loose items thus corres-
pond 'item allribules'. The item attributes are
common lo allitems, and define the paper border
and ink colours for each status.

Some other aspects, howeve[may be different
for each item. ln fact, it is as if each item had a
"window'with a conlent. Thus, for each item, you
should indicate what the size and position of its

'window"should be, and also its content and type
(text or sprite). You also define its "selection key'
and so on. The selection key is the key you hit to
have the corresponding item produce an action *
F4 for the'View'item in Qpac2.

2 - Making the loose menu items list

All the data for these items is grouped together in

a list called"loose menu items list"or'Loose ltems
List"{LlL). This list contains the common definitions
for allitems, and the different informatron for each
ilem, one after the other To make this list, you
should use lhe function MK-LIL {MaKe Loose
Item List),

ltab = MKJIL (lattr, Isiz%, Lorgfi, ljus%,
key$, 1bWf , lstr$, 1spr, lblb, lpat)

Itab is the result of this function and is a pointer to
the loose items list. The parameters are as
follows'

-r * lattr. This is an array of dimension DIM
lattr(3,3). lt contains the item attributes.
These are the different colours/borders
which show the dilferent statuses of the
items. As mentioned above, these are com-
mon to all items.

- lattr (0) (i.e. lattr (0,0), lattr (0,1), lattar (0,2)

and lattr (0,3)) contains, in this order the size
and colour of the border of the current item,
in lattr {0,0) and lattr (0,1). latlr(0,2) and (0,3)

are unused.

- lattr(l) conlains the paper and ink colours
for unavailable items in lattr (1,0) and lattr{1,1).

The two other elements of lattr {1) (ie. lattr
(1,2J and (1,3)) point lo a "blob' and a
"patlern' (more of which later): in general,
though, lhey are left emply. For my part, I

don't think l've ever encountered a program
where they weren't left empty i.e. 0 {just
putting myself out on limb here, of course).

- Next, same thing for available items(lattr
2,0 et 2,1)

- Next, same thing for selected items (lattr

3,0 et 3,1)

-, * lsiz%, lorg%, and ljus% are integer arrays of
dimension DIM (n-1,1) where n is the number
of items in the menu {numbering starts at 0).

Thus, if you have three loose menu items,
you'll DIM the arrays DIM t2,1). Element 0 {i.e
0 0) and (0 1) then contains information

48 QL loday

about the lirst loose item (item 0) element I
of the array contains informalion about
loose item nbr 2 and so on. Just what the
information held in the elemenls is, is

explained here'

a) lsizTo conlains the x and y sizes of
each item. One could say that these are the
size of the 'window' for each menu item lt
is this window whose paper colour will
change when the item becomes selected.
Each element of this array contains, in

element (n,0) the X size of the window and
in element {n,1) the Y size of the window

b) lorg% contains the"origin", i.e. the x and
y position of this "window" for each item.
The position is given as the top left corner
of the'window", in pixels, and relative to the
origin of the (primary or secondarf win-
dow containing the loose menu items, Each
element of this array contains, in element

in,0) the X position of the window and in
element {n,1) the Y position of the window.

c) ljusTo is the xly justification of the
content of the item with respect to its "win-

dow" {i.e. if the item contains a text, is the
text centered, is it flush to the left, or to the
right?) The 'window" for a loose item can
be larger than its content, and then it is

important to stale where the content should
be. For example, the 'F6 Sort' item in the
QPAC2 Files menu generally has a window
that is larger than its content, which can be
seen when you move the pointer over it'
the border around the item is larger than
the content of the item. With the ljusTo para-

meter you indicate the number of pixels
from where the content of the item should
be drawn or printed, with respect to the top
left corner of the item's 'window'. lf this
parameter is 0 in any of the directions {x or
y), then the item will be centered in that
direction. Each element of this array con-
tains, in element {n,0) the X justification of
the content of the window and in element

{n,1) the Y justiciation of the content of the
window

-) * Kry$ is a string that contains the selection
key for the items. The selection key for an
item is the key to be pressed to hit/do the
item. KEY$ is one large string made up of
the selection keys for each item, so that
key${O) = the selection key for item 0,

key${l) = the selection key for item I and
so on. Thus Key$ is composed as follows,

key$=qhr'g(n1) &ehr$(n2) A. . . &chr$(nx)
i.e. exactly ONE keypress characler per
item, until x items. The first is for the first
item, and so on. You can also wrile,

keY$=ttgtt gttBrt &tt Crr etc...

lf you do not wish an item to have the pos-
sibility to be hit/done with a keypress, use
CHR${0) in the string for the keypress for
this item

The character in question MUST be put in

UPPER CASE, {i.e. either'A"instead of "a"or

CHR$(65) instead of CHR$(97)). lt doesn't
matter later on, whether the uses presses
the key in upper of lower case, but here at
the definition stage, you MUST give it in

upper case.

There are also some special characters:

CHR$(l)= Hit= SPACE/left mouse button
(not to be used as selection key)
CHR${2) =DO=ENTER/Rightmouse
button (not to be used as selection key)
CHR$(3) =Cancel =ESC
CHR$(4) =HelP=Fl
CHR${5) = Move window = CTRL F4
CHR${6) = Change size = CTRL F3
CHR${7) = Wake = CTRL F2
CHR$(B) = SleeP = CTRL Fl

Thus, if you have an item the action of
which will move the window {it should then
have the standard sprite for that, as well),
the key$ for this item should be CHR$(S),
and thus, each time you hit the standard
CTRL-F4 combination to move the window,
this item will be actioned You COULD con-
ceivably use any other key, but it really is

better if you use the standard keypresses
for these standard itemsl

All of these actions should be quite clear
except perhaps wake and sleep' Try CTRL
Fl and CTRL F2 in QPAC 2, and you will no-
tice that sleep puts the program to sleep as
a button, CTRL F2 wakes it up again, and
refreshes the menus.

0f course, you are not required to provide
for buttons, wake or even window move
events in your programs. lf you do provide
for this, howeve[it is suggested that you
use the standard keypresses for the items
concerned.

-, * ltyp% is an array of dimension DIM {n), i.e
one single element per item This array de-

50 8Llodoy

termines the item type There are four lypes:

0 = the item is a slring
) = " sprile
l, = " blob
$: " patlern

Once the type is determined to be one of
the four above, you can then add nothing,
256, -256 or other negative numbers to rt.

This changes the behaviour of the item:

- lf nothing is added, different actions result
depending on whether the item is'hit" or is
'done'' when the item is"done", the program
comes back from reading the pointer {as we
shall see later) but if you only "hit" the item,
the item will only change status beteween
selected and available a{and back} and that
is all.

- lf you add 256, the item, even when it is
"hit', will cause a relurn lrom the read poin-

ter loop, as if it was done. Thus, there is no
dilference between hitting and doing t!)
Also, the item's status is immediately reset
to available,

* lf you add -256, a hit and a do are, again,
the same, but the item is not reset
immediately to available.

- You add other negative numbers, but only
to text items. lf you do that, you willcause a

lelter in the item (if it is a textl) to be
underlined automatically This is covered in

more detail a bit later

-, * lstr$,lspnlblb,lpat are the arrays containing
the content of the items' lstr$ contains
strings, lspr contains pointers to sprites, lblb
points to pointers for blobs, lpat points to
addresses lor patterns (we shall see the
definition of blobs and patterns later - they
are very seldomly used for loose items).

Thus, if you have determined (by type%)
that the first item is a string, the first
element of lstr$ contains this string.

The arrays for these pointers are DlMmed
to DIM {n), with lstr$ being dimmed lo
(n,max-length-of -string) as is usual for
string arrays. They parsed - and must be
filled - for each corresponding item, as
relerred to by the ltyp% of the item. Let's
suppose we want 3 iterns, the first one a

text item ('HELP') the second one a sprite
items (window move), the third again a text
item ('ESC') and the fourth another sprite.
We will then DlMension the ltyp% array for
four elements: DIM ltyp% (3). The contents
of ltypo6 will be,

Ityp%(0)=0 (string)

llyp%(1)=2 tsprile)
ItypTo(2)=0 {string}
Ityp%(3)=2 (sprite)

We will then DIM lstr$(3,10), lspr{3),lblb(3)
and lpai(3)

lstr$(0) will contain "HELP", lstr$(2) STAYS

TMPTY (0 string), lstr${2) will be 'ESC"and

lstr$(3),stays empty again.

lblb and lpat will remarn empty (all elements
set to 0). Likewise, lspr will be empty
except for lspr(l) and lpsr{3) which will each
contain a pointer to a sprite (as explained in

the last instalment of this series).

The MK-LIL will automatically choose the
correct items from the correct arrays,
depending on the type of the item. This can
be one the worst problems wilh the QPTR
function, i.e. fill in these arays wrongly..

Next time, we deal with automatic underlining of
a letter in a text item and information sub-
windows.

New Q-Word Game coming soon
Phoebus Dokus informed us about a new project from RWAF
Geoff Wrcks and himself. Here rs a short descnplion, and have a
look at the screen shofsl As it is supposed to be ready for
XMas, that's the last chance to report about it before its release.
We hope to have a review for you as soon as the product is
released hinl hint, for both RWAP and reviewers!)

Q-Word is a word puzzle den words" puzzles. Q*Word
game that's a fusion between runs on hi-resolution, hi-colour
Tetris, Scrabble and your Sun- screens and its the first QL
day newspaper's "Find the hid- commercial game of its kind to

use digital sound {as either a

CD sountrack on QPC-QXL or
via SSS Q40/Q60iAmiga).
There is also planned support
for Q-Midi {Via the NET ports
on regular QL/QXL and Aurora
and in the future via serial on
all platforms or Standard Midi

UART on uQLx). Q-Word is
based on the Q-Typ dictionary
therefore it practically can be
used in all languages a Q-Typ
dictionary exists. The follow-

Qtlodoy 51

that this happens because of the Spring Equinox
being set in March.

I hope that this is of some interest to someone!

Foolnoles:
tl) To be absolutely correct -lerm wise-: "The One,
Holy, Orthodox Apostolic and Catholic Church"
(Orthodox: "The one that preaches the CORRECT
lruth" from Orthos: Correct, Doxa: Belief, Rite and
Gatholic: The one for ALL- from OLA=All, Everything)

as it is ils full title - | am sure someone will have
some use for this trivialinformationi)
(2) This was adopted by the -then- Hellenic Kingdom
a little after the Olympic Games due to some funny
circumstances with foreing correspondence from
the Games,.. ie the letter arriving at a date in say the
UK before il was senl :-) (l've seen some of those in

my years working for Vlaslos Philatelic Cenlre and it
was rather interesling as the first thought thal
comes to mind is that Mr. Spock is righl... Time Warp
lS possible :-)

Programming with QPTR -

Pa ft 4 - tn* bvet n poinrers

WolfgangLenerz

Last time I left you with the promise to explain
automatic underlining of text items. So here it is'

3. Automatic underlining of a letter in a text item

You will probably have noticed that in many ca-
ses a letter in a text loose menu item is under-
lined Igenerally, but not always the first letter).
This serves to indieate to the user that this letter
is the selecton key for this menu item. For an

example, you can look at the'Command"menu in

the QPAC 2 Files program,

This of course is a very nice possibility and,
provided you have QPTR version 0 08 or higher
you can also make use of this in your own pro-
grams.

As was mentioned last time, to obtain this auto-
matic underlining, you have to add something to
the type of the item. Remember this works only
with text items - and you can only underline one
letter per item, of course.

In principle, to obtain automatic underlining, you

sublract 2 lrom the item type to underline the first
character of the item, 4 to underline the second
character in the item text, 6 for the third and so
on - in fact, you subtract twice the position of the
letter in the item text.

ln practice, however this will generate an error if
you use an underlined text item and add -256 to
it {to obtain a return even when the item is 'hit'

and not "done"). The combination of a negative
item type and a negative addition to it, makes
QPTR hiccup and refuse the item type.

Hence, to oblain underlining in a text item where
you also want to use the -256, you should use
the following item types:

251 = text with first letler underlined
252 = text with second letter underlined
250 = 3rd letter

and so on. I think you can see the progression.

lf you want to use this possibility though, you
should slightly change the RD-LOT procedure
that comes with QPTR (and the use of which is,

of course, highly recommended). I have made
these changes, and here you can find the
procedure as it stands now'

DEFine FuNction RDJ0T (lattr,nitem)
L0Ca1 count(3)
L0Ca1 ltem, lt)tp, a$, lsk$
L0Ca1 ldeffi (nitem-l,6), lptr(J,nitem-l)
LOCAL lstr$(nitem-1, 85)
lsk$= t I

FOR iten = 0 T0 nitem-1
READ ldeff(item,0), tdefl(iten, 1)
READ ldefl(ttem,Z), ldefl(iten,3)
READ 1deff,(item,4), ldeff(lten, 5)
READ a$: lsk$=1s16 g .6
READ ltyp
ldeff, (item,6) =ltyp : ltyp=(ltyp l40D 256) /2
IF 1typr10 or ltyp<O:ltyp=Q
IF ltyp
RIAD lptr(ltyp, count (rtyp))

EISg
READ lstr$(count(0))

END IF
count (ltyP) =count (ltYP) +1

END FOR lten
RETurn MKJIL(lattr, 1deffi(To, 0 T0 1),
ldefs(T0, 2 r0 3), ldefr(To,1 T0 5), 1sk$,
1deftr(To, 6), lstr$, lptr(r), lptr(2),
lptr(3))
END DEFine RD-IOT

As you can see, the changes concern the
handling of ltyp.

8L 39

Ok, now the handling of menu items has no more
secrets for you.

e - The information_subwindowietinitionlis!

As mentioned in previous instalments of this
series, menu items all have a certain action, the
do something. This is not true for 'information

sub-windows"- they are lhere only to DISPLAY

some sort of inforrnation, or used just to draw
borders within the window lf you look at the
"command" window in the QPAC2 Files program,
you can see that the window is divided into three
parts: the upper part, containing the name of the
window a middle part framed by a green border
(it contains some loose menu items) and the
lower part with commands that are not included
within the border This border was drawn with an

inlormation sub-window whose only f unction
here is t0 draw that border

Contrary lo loose menu items, information sub-
windows do not have to have common attri'
butes. They can be as disparate as you wish
them to be. Moreover the content of each infor-
malion sub-window can be completely different,
not only from the content of other information
sub-windows, but even from another part of the
content of that same information sub-window

Thus, when building the list of lhe information
sub-windows, this list will be substantially different
to that for the loose menu items. ln fact, we will

have several lists, one general master list, contain-
ing pointers to the information sub-windows, and
then one list per information sub"window.

Here with the level ll pointers, we are only con-
cerned with the master list, which contains infor-
mation for each sub-window as well as pointers
to other information. The information contained in
this master list is concerned with the "physical

definition of each sub-window {size, origin et al).

The pointers to other informalion point to infor-
mation about the content of each sub'window.

To build this masler list, we use the following
function, MK-IWL {MaKe lnformation Sub-Win-
dow List)

inftab = MK_IWL (iwdef#, lwattr%, infolist)
where'

-, * iwdef% is an array containing the physical
description of the windows. lt has a dimen-
sion DIM (n,3) where n is the number of

information subwindows-l. For each array
element z, the array contents are,

- window x size (2,0)

- window y size {2,1}
- window x origin {2,2)
- window y origin {2,3)

The origins are the top left corner of the
window with respect to the top left of the
primary (or secondary) window containing
the information sub-window

-, * iwattr% is an array with the attributes of the
sub'windows. lt is again an array DIM (n,3)

where n is the number of information
sub-windows -1. For each array element z,

the array contents are:

- Shadow "depth"- this is aclually ignored
for information sub-windows and should be
letl at 0.

- border size
* border colour
- paper colour

of the inlormation sub-window in that order

-, {< infolist again is an arrail but not an integer
array lt is an array of pointers towards the
lists containing the content of the informa-
tion sub-windows. These pointers are ob-
tained with a level lll function tMK-lOL),
which we shall look at later: There is one
such list per information subwindow (or else
the pointer is left at 0).

D - The application subwindow list.

Here again, this is a master list. lt is, again, diffe'
rent from what has gone before. Actually, it con-
tains no other information than pointers towards
application sub-window definitions. lndeed, for
each application sub-window we must establish
one definition. The pointers to these definitions
are united into this single master list.

Like information sub'windows, application sub-
windows do not necessarily have common
characteristics, they can be very different from
each other This is why the master list contains
only these pointers to the application sub-win-
dow definitions.

To build this list of application subwindows, we
shall use the function MK-AWL (MaKe Applica"
tion sub-Window List)

apptab = tW-AVL(appsubwin(n))

42 Q,Ltodoy

appsubwin is an array containing the pointers to
the application sub-window defintions. For "n'

application sub-windows, you will DIM this array
(n-1). lt will be filled in with pointers supplied by
the MK-APPW function,

appsubnln(0)= MK-APPW (1evel III pararneters)

appsubwin(1)* MK*APPW (1evem III parameters)

etc..

lf your window does not have any application
sub-windows, apptab is lust 0.

This finishes level ll - so let's continue right away
into level lll.

TheLevel lll Pointers

The Level lll commands and functions are used
to fill in the contents of the sub'windows {infor-
mation sub-windows and application sub-win-
dows). As was already mentioned, the content of
the primary window is made up of the loose
menu and the two types of sub-windows, its
contents are thus defined by them. The loose
menu is akaedy entirely defined in levels I & ll so
there now only remarns to fill in the content of the
sub'windows.

A - The information sub-windows

The "physical" definition (i.e. size and origin) of
these windows was already given in Levelll. Here
in level lll, we only deline what is in the sub-win-
dow. The contenl of such a subwindow is made
up of "objects". An oblect may be anything, a

lexl, a sprite, a 'pattern" or even a "blob". For

example, if the sub-window is to contain the
words"Joe was'ere", the object is the string"Joe
was 'ere', and it is an object ol type text. We
have already met objects, the content of a loose
menu item can be a text, a sprite, a "blob' or a
"pattern" - this is, in fact the "obiect'of this loose
item. The same is true for information sub"win-
dows but an information sub-window can contain
several objects whereas a loose menu item can
only contain one object.

'lb use the above example, if the information sub'
window is supposed to contain the string "Joe

was 'ere", this text could be the object of the
sub-window But I could also say thal the word
"Joe"is the fnst object of the information sub-win'
dow the word"was"is oblect number 2, and "'ere"

object number 3. The window thus would have
three text objects.

Agreed, in the above example it would not make
much sense to have three obyects where one
would do the trick (and eVOn So: see below).
However you could have a text in front ol or
next to a small sprite. Then you would have to
define two objects, one a text, the other a sprite.

By now you will have guessed that you will need
to build up a list of information sub-window
oblects. This is achieved with the function
MK-IOL {MaKe lnformation sub-window Obiects
List):

listobjl = MK,*I1L (isLze%, iorgfi, imod,
Ltype/ t tstrg$, lspr, iblb, lpat)

Here, listobjl, the result of the function, is a
pointer to the list of the obiects.

The parameters to this function are not very
complicated (hereafter 'n"is the total number of
objects in lhe information sub-window to put on
the list):

-, * isize% is an integer array of DIM isize%
(n-1,1). For each object x, isize% (x-1,0) is
the x-size and isize% (x-1,1) is the y-size of
this object (remember numbering starts at
O).As usual, the sizes are given in pixels.

-, * iorg% is an integer array of the same
DlMensions and contains the x and y

origins of the object within the information
sub-window. {0,0) is the upper left hand of
the information sub'window.

-, * itype% is again an integer array but of
DlMension itype%(n-l). lt contains informa'
tion on the type of object (same as for
loose menu items). Here again, you can
provide for automatic underlining ol any
letter in a text obiect, by varying the type
parameter jusl like for loose items' (254=1st

character is underline d, 252 = 2nd character
is underlined and so on).

-, * istr$, ispr iblb and ipat are string arrays
(istr$) or floating point number arrays {the
others) and they contain, just like for loose
items, the objects themselves, i.e. the
strings (istr$), sprites {ispr} blobs (iblb} or
patterns (ipat). Each obiect can be of any
tYPe.

-, * imod is a floating point array and contains
possible additional information on each
obiect,

-

@Lloloy 43-

* lf the object is a sprite, there is no additio-
nal inlormalion.

* lf it is a blob, you must insert here the ad-
dress of a 'pattern", and if it is a pattern,
give the address of a blob. Generally in-

stead of refering to blobs and patterns, you
might consider using sprites

* lf the object is a text, you must give the
ink colour of the text, and the size of the
text {like in the CSIZE command). This data
is combined as follows'

lnk * 65536 + Csize-x '(256 + Csize*y

Thus, if the obiect is to be a string which is
to be printed in red and big letters (i.e ink=2,
csize=3,l), this becomes,

2 * 65536 + 3 * 256 + I = 131841.

Thus for this object, rrnod {x-1} would
conlain 131841.

It follows that if I want a string ("Joe was
'ere") where Joe would be printed in big red
letters, the rest in normal colours, I would
need two objects, one for "Joe', the other
for the rest,

Strangely in the parameter list, the imod
parameter precedes the type% parameter even
though it is the type% parameter that determines

what the additional information is - but that's the
way it is.

You should build up a list for each information
sub'window {unless the sub-window is empty -
then the pointer is 0).

You will thus write,
listobJl= MK-IOI(...)
listobj2= MK-i0L(.. .)

and so on, one for each sub-window. Once the
lists for the sub'window have been made, then
you must regroup the pointers to the list in

another array, as follows,

DIM lnfolist(n-1)

lnfollst(O)= listobJl
infollst(1)= listobj2

lnfol5.st (n*1) =listobj n

The infolist array is then one of the parameters to
the MK-IWL function, which, as we have seen, is

a LEVEL ll function explained earlier

OK, that's it for loday

More in the next instalment, where we'll look at
some more level lll parameters.

TK2 on MAC QL Emulator
by Al Boehm

About how to
MAC Q-mulator:
The Q-emulator web
l'low:
http://users. infoconex.com/daniele/q-emulator.html

However thal won't help with the MAC version
since that page is still being updated

It's been some time since I ran Q-emulator for
MAC and I am still looking for the paper manual
which is probably within B feet of where lam sit-
ting. As soon as I find it, I willgive you more defi-
nilive instructions. lf I don't find it, I will email
Daniele for info.

As I recall, there are two steps to installing the
TK2-ext,

install TK2 oR the

page has changed. lt is

1. Get a copy of TK2 (Tony Tebby has OKed free
use of TK2 on emulators). lf you have a hard time
finding a copy of TKZ,l will send you it via email.
It's not very large.

2. Use the the CONFIGURE menu to install the
copy and then save the configuration. I remem-
ber this was pretty straightforward but I do need
that manual to be exact.

Editor's comment;
T

YOU are using the latest
MAC Qt Emulator why not write about it? Other
readers may be very interesled in your
experiences? I slill get asked by Mac users and
can't refer to anything recent Also, if you run
QPC under RealPC or Virtual PC on the Mac,
please tell us and olhers about it Best, if you
use both and let us know the advantages and
disadvantages of each system.

44 QLlodoy

Programming with QPTR -
Fl^,rt E
fdl L J - the level lll pointers

Wolfgang Lenerz

We finished the level lll pointers for information
subwindows last time. Now it's iime to explain
those for application subwindows,

B - Anplication subwindows

There are two kinds of application subwindows.
Firsi, there are 'menu application subwindows".
These contain elements which behave like loose
menu items: they can be selected, clicked and
actioned A typical example would be the QPAC2
"Files" menu - the names of the files which are
displayed are part of an application subwindow'
they can be selected, and, if you DC them, they
produce an action. The"menu items'of the menu
applrcation subwindows are displayed in a grid
This makes a nice contrast with the loose items.

The second type of application subwindow is the
"simple" application subwindow This does not
^^^+^;^ , ;^ +^^+ ;+ ;^ ^-^+" ci^^^ ;+ J^ ^^^'+uuilrdilrd ilrcr ru, ilr tdt r il. rJ gr iliJry. \)ilrutr il uutrJl tt
contain anything, it is easier to define than a

menu application subwindow

As we have seen for the LtVtL I definitions,
there is a list of application subwindows, com-
posed of pointers (addresses) to the subwindow
definitions This thus must mean that application
subwindows also have definitions... and, indeed,
there is one definition per application subwindow
This delinition is built with the MK-APPW {MaKe
APPlication sub-Window definition) function'

appsubuin = LIK_APPW(awdef%, aattr%, aptr,
akey$, x*ctr1def, y-ctrldef, xoffll, yoff%,
x-spac, y*spac, xindex, yindex, linelist)

Phewl

Let's start by the easiest bit, The first four
parameters The first two of these {ie awdef?o
and aattr%) are identical to the first two parame-

ters of the MKJWL function which was descri-
bed in the last instalment of this series They de-
termine the 'physical" definition of the window

{adef%} and the window attributes (aatlr0/o} as
follows'

-, * awdef?o is an array containing the physical
description of the applicatron subwindow lt

has a dimension DIM {3) The array contents
318:

' window x size {element 0}
- window y size (1)

- window x origin {2)
-window y origin {3}

The origins are the top left corner of the
window with respect lo the top left of the
primary {or secondary} window containing
the application subwindow

-r * aattr?o is an array with the attribules of the
subwindows lt is again an array DIM (3) The
array contents are:

- Shadow "deplh" - this is actually ignored
for application subwindows and should be
left at 0
- border size
- border colour
- paper colour

of the application subwindow in that order

-, * aptr is the address of a pointer sprite for
this application subwindow Thus, each ap-
plication subwindow may have a pointer
sprite that is different from the main window
pointer sprite!

-, * akey$ is the "selection key" of the applica-
tion subwindow - this is used to bring the
pointer directly into the application subwin-
dow Moreover if the application subwindow
is a menu application subwindow with a scroll
bar hitting this key will bring the pointer:

- first to the centre of the application
sub-window if lhe pointer was not already in
the application sub-window
" then , if you hit it again, onto the scroll bar
(if anyl)
- then back to the centre of the application
subwindow
- and again onto the scroll bar - and so on...

Just like for loose menu items, this selection
key must be passed to the MK-APPW
function rn upper case. Generally, the TAB
key (chr${9}} is used, if there is only one
application subwindow

It is possible to define application subwindows
with these first four parameters only. ln this case,
we have a simple application subwindow, and the
call to RD-PTR {see below} will come back each
time the pointer has moved or a key was hit (pro'
vided, of course, the pointer was in the applica-
tion subwindowl)

18 QL Xodcy

lf, however you wish to define a menu application
subwindow, you must fill in more parameters
which will be explained below

IV - LEVEL IV:

Defining rows and columns

Before starting on this let's see what a menu
application subwindow consists of" This is one of
the most complex aspects of QPTR program-
ming - again, it is not difficult, there are just many
parameters to learn {and remember)... Howevet
if there are many parameters this also means
that you will have a large freedom to set up

these windows (else the parameters wouldn't be
of any use)

A , The comoone[ts qf a menu-apph-ca!i_0_n_sgh:
window

As we have seen above, the first parameters of
an application subwindow are normal, size and
origin of the subwindow, colour and size of its
border; pointet "paper" colour and "selkey". These
parameters shouldn't be complicated

Apart from that, an application subwindow is

nearly entirely composed of "objects", ie the
items of the menu. As mentioned, these are
similar to loose meny items, but are arranged in a
grid of rows and columns.

lf need be one my also add the scroll/pan bar
and scroll/pan arrows. You can clearly see this in

the "Files' menu of QPAC 2 , where all of these
elements are visible. The "objects" are, of course
the filenames.

Just as a reminder: when the window can be
scrolled up and down, then this is a "scroll" lf the
same is possibel for left to right, then this is a
"pan'

l) The obiects

As mentioned, the objects are items, quite similar
to loose items. Here again, you must make a list

of these objects and specify the type of each
object {text, sprite etc. i ln most cases it will be
text, but not necessarily so, as Jerome Grimbert
shows in these hallowed pages of the august
magazine {see his series on XMenu).
For each object, you also specify a possible
selection key, the content type (ie the text), the

content itself and the position in the grid As you
can see, quite a long number of parameters. This
Irst is made up of Level V parameters which will
be detailed later and is built with the MK,AOL
function.

Let's suppose for now that the list has already
been built and that 'obtlist" is the result of the
MK-AOL function

Since the oblects of an application subwindow
behave similarly to loose menu items, lhe current
item is also surrounded by a border like the
current rtem in a loose menu. The objects can be
selected, thus changing their status, and if an
object is"done", it may produce an action.

Here again, like for menu items, you will have to
determine the attributes of these objects' the
colours for the different statusses, and the colour
and size of the current menu item border These
are common for all items of an application sub-
window Of course, different application subwin-
dows may have different colours (l'm not sure
whether that would be a good design practice,

though)

This is where the similanty with loose menu
items ends, as here we do not have "loose"

items, but "bound"items - they are bound to each
other and part of a grid of rows and columns.

2) Columns and Ietys

Since the items are part ol a {hopefully regular)
grid, we must specify how these objects are to
appear in the grid Whilsl this is necessarily in

rows and columns, you can specify how many
rows and columns there are to be. The columns
for each row need not be identical.

ln most cases, the most important element is the
row You must determine which obiect(s) can be
found in which row Thus you must establish a
row list which clearly states what row contains
which objects, e g show that it contains objects
a to b. The next row then contains objects c to d
etc . lf there is only one object per row {e g The
QPAC 2 "Files" menu with'Statistics" switched on)
this is not really complicated: you just indicate
that object 1 is in row 1, obiect 2 in row 2 , 3 in 3
and so on

lf there are two objects per row you will indicate
that objects 1 and 2 are in row 1", objects 3 and 4
in row 2 5 and 6 in row 3. - you get the picture.

c QLToday L9

-

(This row list is made with the MK*RWL function,
commented below).

So, by now we will have indicated the content
and parameters of each object, and in which row
each objeci is going to go Now you have to
determine the size of each row by determining
the size of each column.

Each column as two sizes, the 'hitsize' and the
'spacing' between objects. There is one of each
per column in the row

The hitsize is the maximum size ol an object in

one column of the row - this actually defines the
column size lt is this size that will change colour
according to the status of the item Again, look at
lhe "Files" menu - if you click on a filename, it is
not only the paper under this filename that
changes colout but the whole area lhat goes up
to the second column (if any), and this, whatever
the length of the filename may be lt is also that
area which is outlined by the border when you
bring the pointer over it, showing that this is the
current item.

Tho 'cn:r'inn' dotarminoc tho nr rmhor nf nivolcvl yl /\U'J

between the beginning of the hitsize of the first
column and that of the hitsize of the next column,
if any (and then the next columns, if any etc.).

Clearly the spacing must be at least as large as
the hitsize, and ideally a bit larger (so that the
border around the current item can be shown).

Let's presume that we have four rows with three
columns each. And let's further suppose that the
objects in the second column will be longer than
those in the first column I could then define the
hitsizes and spacings as follows:

column one : hitsize 50, spacing 54
column two : hitsize 70, spacing 74
column three, hitsize 40, spacing 44.

The numbers correspond to the sizes in pixels,
lhe first column wili have a hitsize of 50 pixels
and a total space {spacing} of 54 pixels There
will thus be at least 4 pixels between the object
in that column and the object in the next column.
You should make sure that the column rs al least
as long as the largest obiect that can go into it. tf
not, the obiect will be cut {if it is a lextJ or even
nol drawn ar all {if it is a sprite)

You determine the hitsize and spacing for each
column of each row By doing this, you build up

what is called the "spacing list' There is no need
to have each column in each row [o be the same
size as that of the rows above and below You
don't even have to have the same number of
columns in each row Again, I consider it to be
good programming practise to have a regular
grid. lt does make presenting the data easrer

It seems obvious that if you add up the spacrngs
of each row in each column, you should get the
size of the subwindow lt is possible, however to
exceed that size, in which case the applrcation
subwindow becomes'pannable".

Likewise, if the combined height of all rows ex-
ceeds the height of the window, the window be-
comes scrollable.

3) Seclt_ons

An application subwindow can be cut up into
several independently scrollable (or pannablei
"sections". fach section can be scrolled indepen-
dently, but they all show potentially the same
,l^+^
Ucltcl.

Qor-tinnc:ro nnt na.accar\/ for ennlinetinn crrh-vvvrrvr rJ qi u r rvr r ruvuJJsr J rvr uvPluurrvr r Jvv

windows. lf you take the QPAC2 Files menu for
example, there are no sections. Let us suppose
there were, though. lf you have so many filenames
that the window becomes scrollable, you could
cut up the window into two sections The window
would be split up horizontally into two sections,
there would be scroll bars for each seclion.
ln principle, each seclion has its own scroll
bars/scroll arrows (and pan bars/pan arrows of
course). That way, you can see, at the same time,
the start and the end of your data {in this case,
the filenames.

It is important to realise that all sections may use
the same rows and columns, and thus you can
see all of the data in each section - you just have
to scroll through it

The user doesn't have to use the same different
sections. ln general, when the user brings the
pointer to the scroll bar (NOT the scroll arrowsi
and "does" on the place where the two sections
come togethe[the sections are joined and
become one.

4) The control definition

conlrol definition tells the pointer Environ-The
ment:

22 8L fodey rc

* how many sections there are
x how many rows there are in each section
* at what row each section starts
* where each sectionstarts in the window

OK, we have now seen the drfferent elements
that make up the application subwindow So let's
start defining them

B - The parameter

First of all, you may have noticed above that two
paramelers io the MK-APPW function were left
unexplained,

-, * xoff% This parameter just gives the num-

ber of pixels between the left border of the
window and the first object on the left of
the wrndow. This applies the the first column
of all rows of the applicaton subwindow lf
left at 0,the first obiect will be right up
against the left hand side of the applicatron
subwindow.

-, * yoff?o is the distance, in prxels, between the
uppermost visible row and the upper border
of the application subwindow

Ok, that's it for this time. Next time, we'll continue
looking at level lV parameters

QTrans Review
John Perry

QTrans is a quaintly named iile
copy and transfer utility While

QL file handling programs are

ten a penny, this is one of the
ones which does stand out
from the others. This review is

of version 103 which had lust
been released at the time of
wriling this review ln fact, it was
the latest in a flurry of releases.
For a start it's pointer driven.
It's claimed to be a precursor
to a full blown GUI (Graphical

User lnterface) for QL systems
And it has quite a few novel
features, like the dual file listing
windows enabling you to see
simultaneously the list of files
on both the drives you are
copying files from and to ln ad-

dition it has all sorts of com-
mands and facilities for iust
about any file action from view-
ing and printing to searching
and trashing.
Trashing? Well, one of the novel
features of this program is the
liash Can This is a facility
which lets files be deleted, but
done so in a way that allows
you to undelete later
It's a fairly rudimentary form of
'recycle bin' or similar facility
found on other computers. lt is
not a true'delete'action but ra-

ther files are put into a special

folder on a hard drive rather
than being deleted as such ln

fact, there is a choice of Delete
or liash commands meaning
\/nr r can chnnsp hnw files arey vu vur r vr rvvJu r rv

deleted {provided you remem-
ber to use the correct com-
mand of coursel)
The author suggests you give
this folder a shorl and unusual
name such as WlNl-*- or a

single letter name if you prefer
something easier to remember I

opted for WlNl-x- as it made it

less easy for me to use a

command from BASIC, for
example, to accidentally delete
something lrom this folder! ln

use, rt worked well enough
even if the Trash directory
seemed to fill up at an alarming
rate the way I go through files!
ln fact, for each file lrashed, it

seems to create two files, one
with the original filename, and
anolher much shorter file with a

f ilename suffix o{ *T which
contains details of where the
file came from and the original
file dates - yes, it even preser-
ves file dates rf that's innportantl
The content of the liash direc-
tory can be viewed just like any
other directory on your hard

drive and restoring files is as
easy as copying files normally
Either navigate to the Trash Can

folder or simply hit or do on the
little icon of a bin, then select
the Untrash command and it'll

offer the choice of whether to
restore the file to the original
directory it came from or to the
currenl path, which is what it
calls the directory contenl
shown in the other window
l've realised l'm letting my en-
thusiasm get ahead of me here,

so let's slart with a screen
dump from the program to
show you the basics of what
this program is all about.

ffiffiffi::.* irrrlll i;l!.j8ti[i'::;,i]t"l ir:[ll']lJHtfi:!; i-,,;g 1:,'i:lli-
':lra.il]i.ij:

:laiftrT i]rri:rilllllFilni

ffiffiffiwffiffi il'liJrlsiffiffiwwwffi
ffiffiffiffireffiWffi ffiffiffiff :i +t ffiffiffiffiffiffiffiffi ffiffiffiff

olToday 23

So you can see where we have single stepped
through the above code, and we are jusl about
to lump to label 'T24-N0T-T30' because this
instruction is not a type-3O, [xcept, we know
that it is an ADDX instruction because that is
what I was testing, and ADDX is a type-30, so
what have I done wrong?

I have tested bits 7 and 6 and found them both
to be zero (because the Z Ilag was set after I

stepped through the ANDIIV SC0,D0 inslruclion,
This means that the iump should not be taken to
T24-NOT-T30 because I have not yet ascer-
tained that the instruction is not an ADDX With
bits 7 and 6 set to 00, I could be looking at
ADDX or ADD. I should not be taking the jump

until I have furlher tested the value in bits 5 and 4

as per my algorithm above

This could be why the ADDX is being decoded
as ADD, because I have the wrong condition in

my test ln order to fix this, I have to change the
source code, re-assembie and try my test again.
I do this without the QMON2 first of all and if it
still fails, I can use QMON2 to try and find out
why again, I need to give the current job a 'G'

instruction and then I can tSC from the decoding
and exit the program

I shall go do that and report back. Hang on here
for a bit

Ok, I'm back I made the change from 'BNE.S' to
'BEQ S' and it worked fine So it looks like I have
correctly identified the bug, I need more testing
though to make sure I cover all possible op-
codes I have followed up my ADDX testing by
passing test files which have ADD, ADDA, ADDQ
and ADDI instructions, along with assorted SUB
variants and all appears to be working well

So there you have it, an example of how I ma-
nage to get my code wrong and how I can use
the tools available to try to sort it out. As I men-
tioned earlier QM0N2 is available from Jochen
for a small fee, but only if you understand Ger-
man manuals.

Laurence {Lau} Reeves has a different version of
QMON2, written by himself, which fixes some
bugs but I don't know if this is widely available or
if it comes with a manual. Perhaps he could be
persuaded to part with it or make it available -
who knows. I'm not sure if he ever wrote a

manual for it though

See you next time.

Programming QPTR in

SBASIC
W Lenerz

Second Part - Displaying Windows

OK, by now I don't really know what part of this
series we're in anymore,. (Kudos to Herb Schaaf
for keeping his numbers up!) Howeve[we've ar-
rived at the second section of this little walk-
through,
Once we've defined our window it's time to put it
up on the screen. Do not forget that the first
window to be opended is very important - it is

the primary window and all other windows (the
secondary windows) must be within that primary
window The keywords for bringing windows
onto the screen may be grouped into several
sections, first, how to display the window in itself
(l), then changing something within the window {ll)
and, last but nol least, opening channel(s) within
the window
ln the following explanations, I shall try to keep
variable names coherent with what has gone

before, whenever the same variables are to be
used.

| - Displayins the window
There are iwo purposes for this The main pur-
pose, of course, is to display the content of the
window. Second, one wanls to make the window
'managed" by the Pointer Environment lndeed,
only a window properly managed by the Pointer
Environment may profit from allof the advantages
granted by that Environment,
There are lwo keywords for displaying windows
in the Pointer Fnvironment There is also a key-
word to make an already existing window a 'ma-

naged"window. Attention, we're talking about dis-
playing the main (primary and secondary) win-
dow itself, not the sub-windows There is no key-
word to display the subwindows specifically -

they are displayed automatically with the primary
or secondary window

A - making an existing window "managed"

The command 'OUTLN' {OUILiNe) makes an
existing window managed and makes the Pointer
Environment aware of the window The window
concerned is one opened with a normal "OPEN"

command.

lCtl(J QL lodoy

The syntax of OUTLN is as follows,

}UTLN [#channel,]xs, ys, xo, yo

The parameters are the same 0s for a normal
open command: lhe window x and y sizes and
the window x and y origins. "channel" is channel
u1 by default
Please note that, when working in SxBasic, the
normal Basic windows (channels tO,tl and tr2)

are not managed by the Pointer Environment in

an automatic way.
Howeve[for a successful programming session
with QPTR under S*basic, channel n0 {Basic's
'primary" window) must be managed by the
Pointer Environment Thus, channel s0 MUST be
managed by the Pointer Environment at the start
of the programming session - just use OUTLN for
that
ll you don't do that, you will get many a bad
surpnse, as, notably, the pointer will not be read
correctly, and your loose items will seem not to
function correctly.

B - Disolavine the window
Putting the window up on the screen is achieved
with two commands, DR-PPOS and DR-PULD,
standing respeclively for "DRaw Prrmary and
POSition' and "DRaw PULlDown window' These
are commands, not functions. They are very simi-
lar being responsible for displaying the window
on the screen and making it managed by the
Pointer Environment. The diff erence is that
DR*PPOS is used only for primary windows, and
DR-PULD is used for secondary windows (also
called pulldown windows, hence the name of the
command). Moreove[DR-PPOS can use a chan-
nel parametel while DR-PULD doesn't {lhe chan-
nelis opened automatically by that command)

The entire parameter list for the commands is,

DR-PP}S f#channelr] i,rorkdef, xpos$, ypos%,

liflags$, appflags% [, xctrldefS, yctfldef%1

As mentioned above, the optional channel para-
meter does not apply to DR-PULD

-) * Workdef is the working definition as re-
turned by MK-WDEF

-) * xpos?o and ypos% are integers which de-
termine, in a very roundabout fashion, the
position ol the window lndeed, obtaining
the window's initial position is a bit counter-
intuitive, xposYo and yposYo do not deter-
mine the x and y position of the upper left

hand of the window as could have been ex-
pected ln fact, x and y determine the place
where the POINTIR will be on the scroen
once the window is drawn. The window is
then drawn around this pointer position in

such a way that the pointer is located at a
predefined location within the windowl

lndeed, we saw earlier that one of the para-
meters o{ the MK-WDEF command is the
inilial pointer position ol the pointer within
the window Thus, when the primary win-
dow is drawn,the sequence of events, for
the positioning of the window is as follows,

The pointer is set to the xpos0/oypos% posi-
tion given as parameter to the DR_PPOS
command. Then the rnitial pointer location of
the pointer within the window is looked up
Afler lhal, lhe primary window is drawn
around the pointer in such a way that the
poinler is located exactly where it should be
within the window As mentioned above, a
pretty roundabout way of handling things

Of course, determinrng where the window
will effectively be drawn is easy, and can be
calculated as xposolo-x and ypos%-y, where
xpos7o and yposo/o are the parameters to
the DR-PPOS command, and x and y are
the paramelers to the MK*DEFK function

As can be expected, this pretty complica-
ted way o{ positioning the window does
have a reason - it is possible to set the
xposYo and ypos?o parameters to -1. ln this
case, lhe window will be drawn in such a
way that the pointer is not moved at all This
is to make sure that windows can appear
where the pointer is, so that the user's
focus (which is generally on the pointer)
doesn't need to change.

As a general way of doing thrngs, this
makes sense The only difficulty arises
when one wants a window lo appear at a
predelined position. I personally find the cal-
culatrons to be made to ensure that the win-
dow appears at a certain position too com-
plicated So what I generally do when a
window musl appear at a certain posilion, is
to set the initial poinler position within the
window to 0. That way, the xposYo and
ypos0A parameters Io DR*PPOS do deter-
mine the point where the window will be
placed Af ter that, I lust set the pointer
position within the window with another
QPTR command

20 QL lodty

-)* Iiflag% is an integer array of DlMension (n-1)

where n is the number of loose items the
window contains. The array is used as a

llag array, where each element of the array
is a flag containing the statuses of the items
- you might remember thal each item can
have several statuses {selected, available,
unavailable and current item) When the
window rs drawn {and also later when the
pointer is read) you will have to determine
what status each ilem is to have - some
items may be unavailable initially or selected
etc... This, of course depends entirely on the
program. For a file copiet for example, the
'Copy' item might remain unavailable lor as
long the the user hasn't chosen source and
targel directories

Each loose menu item corresponds to one
element in the array' liflag7o(O) is for the first
item, liflag%(1) for the second and so on
The values these flags can have are pretty
simple, as follows'

-, 0 : the item is available
-' 16 : the item is unavailable
-, 128 : the item is selected.

There is no special value to indicatE the
current item, because the Pointer [nviron-
ment itself automatically determines what
item is the current item and then draws the
border around it, and this depending on the
pointer position Thus, if you wish for any
particular item to be lhe current item as
soon as the window is displayed, you must
set the pointer to such a position that it is
'within'this item

As the DlMension of the liflagTo array de-
pends entirely 0n the number of loose
items, it is recommended to DIM this array at
lhe same time one establishes the loose
menu ilem list, because at that time one
knows exactly how many loose items there
are in the window

appflag% is the same thing as liflag0/0, but
for the menu application window(s), there
again, each object of a menu application
window may have several statuses (the
same ones as for loose menu items). There
is one array per application subwindow, and
they are DlMmed as follows, DIM

appflag?o{row-1,sec-1) where row is the
number of rows for all of the objects and
sec is the number of sections. lf there only
is one section, then one uses DOM
appflago/o{row-1 0}

-, * ctrldefxO/o is, again, an integer array of Di-
mension crtldefxTo (maxsec%,2) where
maxsecTo is the number of sections as de-
fined in the x conirol definition {horizontal}
The values of this array are a bit special, as
follows,

{0,0} contains the number of conlrol sec-
tions {i.e. maxsecolo).

{0,1) contains 1 if the control de{inition lust
changed, else 0

Then, for each control section i'

{i,0} contains lhe start pixel position

{i,1} contains the number of the first row
shown.

{i,2} contains the number of rows in this
section

-, * ctrldefy% is, you will have guessed, the
same thing for vertical seclions and co-
lumns, instead of horizontal sections and
rOWS.

Please note that the two last paramelers are
oplional, if there is no control definilion, they may
be omitted or simply set to 0 However there will
be as many flag and delinition arrays as lhere will
be menu application subwindows {of course, they
are not necessary for simple application subwin-
dows) lf you have several application subwin-
dows, you may omit the flag arrays for those
where you don't need them.

These are all of the parameters for the two
commands, DR-PPOS and DR-PULD Both com-
mands are similar lhey display a managed
window on the screen As was mentioned above,
the main diflerence between these two com-
mands is that DR-PPOS is used for the primary
window, whereas DR-PULD is used for seconda-
ry windows DR*PPOS can use a CON channel
(which must have been opened beforehand, the
default channel being u1;

The problem with that is that you have no chan-
nel number for secondary windows. lndeed the
DR-PULD command opens a window and a

channel by itself (a channei of type CON) - but
this channel is NOT accessible from S*Basic
There is no Basic channel number corrsponding
to the window opended by DR-PULD This is
different for DR-PPOS which can use a channel
in which all the normal operations IPRINT etc) can
be made. Thus DR-PULD opens an inaccessible
channel.

-r*

z QLloday 2t

Moreove[there may be a certain number of pro-

blems when compiling lndeed, in Sxbastc, one
can practically not use the DR-PPOS command,
as that would mean opening a primary window
But, as we have seen, window s0 of S*basic
should be the primary window for the SxBasic
job, and a job cannot have two primary windows.
Channel s0 was made the primary window with
the OUTLN command Thus, in interpreted basic,
you will rarely use the DR-PPOS keyword

There are two consequences to this'

First, if the program is to be compiled later on,

one should include some lines along the follow-
ing,

IF complled
0PEN#1, '?CoN_',
DR-PPOS (parameters)

Ei,SE
DR.-FULD (parameters)

END IF

Thus, you open a channel n1 {which for nearly all

commands is an implicit channel) in a compiled
program, and then you open a primary window ln

interpreted Basic, you open a secondary window
Second, there may be a positioning problem

when displaying secondary windows: indeed, like
for primary windows, the positioning of the se-
condary window is achieved via the xposo/o and
ypos0/o parameters, which were described above.
However, for secondary windows, these parame-

ters contains the true coordinales {no muckling
about with the poinler position herei where lhe
window will be displayed This however means
that you cannot know where within the primary

window the secondary window will open - the
user may have moved the primary window from
its original position

Of course, there is a solution, as you can use the
pointer positioning. lf xpos?o and ypos?o are given
as -1, the secondary window will open at the
pointer position. You can thus set the pointer

within the prirnary window to a certain position

and then open the secondary window

Ok, this is it for this time - in the next instalment
we'll cover changing a window once it has been
displayed. ls there anybody out there reading this
series at all?

3D Perspective Animation
- Part 3: Trees
Stephen Poole

ln QL lbday ol march 2003, I

mentioned trees as part of 3D
Perspective Animations, but
omitted the code to draw
these from the article. This
article will sel that right. First of
all, I must apologise to readers
for not having divided my vari-
ous 3D programs into modules,
which would have meant less
typing each trme. This is be-
cause I did not expect to print

so many articles from the start,
otherwise I would have plan-

ned things out better Mea
Culpal
ln 1988, a f rench magazine
printed an articie entitled
Growth of Plants' for the Atari

ST This 'interesting' program
allows you to enter strings of

characters which control the
mathematical properties ol
planl-growth, but, patently, the
code doesn't work, even on
the ST {l have probably losl
hundreds of hours typing in

programs from magazines that
rarely work, even after a consi-
derable ammount ol debug-
ging, One wonders if the ma-
gazines possess the necessa-
ry computers to test them on.

lScreenshot attached, to
show that we run the pro-
grams - Editorl But nowadays
published programs are ralher
a rarity) I have also a book
called 'Patterns in Nature'
which describes plant growth,
but unfortunately does not de-
scribe the formula for graphic

output So I had to write my
own melhod from scratch, and
decided to draw bifurcalion
diagrams viewed at an angle,
with leaf-produclion by random
plotting, and the resull was
satislactory enough for my
needs. For more details on
simple binary-trees, see the
forthcoming article in Quanta
This program has been event-
ful for me as for the last 20
years I have been working
uniquely on a monochrome
monitor So I promised Jochen I

would link up my JS to our
television set and experiment
with 4 and B glorious colours
(to improve the otherwise psy-

chedelic output) However I still
prefer the look of the trees on
my monochrome monitor as 4
or B colours don'l give suffi-
cient graduations for my liking.

No doubt GD2 is the answer
Remember that these trees
are flat, so they must be drawn
at an angle They could be

22 8J-lodty

Programming in Sbasic
with QPTR - Part 6
Wolfgang Lenerz

This time we continue to look at the level lV
parameters used to make menu application sub-
windows - indeed the most daunting aspect of
the Pointer Environment.

One of the first parameters is the rowlist, which
we make with ihe MK-RWL (MaKe RoW List)
function,
rowlist = Iv\K-RVL (objlistrrows(n, 1))

The parameters for MK-RWL are as follows
(where"n"is the number of rows - l)'

*, * objlist is the "object list' This will have been
obtained by the MK-AOL function, ex-
plained later in Level V

-) * rows is an array DIM rows(n-1,1) where 'n",

as mentioned above, is the number of rows
wished, This array is filled in by determining
for each row which object is to be the start
ofiect of the row and which is to be the
end obiect Let's suppose, for an example,
that we wish our objects to be in 4 rows
with three columns each, and in the order
the objects are found The array will thus
contain' rows(0,1)=0 (start of row 1) and
rows(0,1)=3 * end of row 0 The row 0 thus
contains objects 0,1 and 2. Next, rows{L0)=3
and rows{1,1)=6 - row 1 thus contains ob-
jects 3,4,5. As you can see, for the end
marker we use the next element: to state
that oblect 5 is the last object of row 1, we
set rows(l,l) to 6

For each row you MUST give as many
obiects as there are columns for the row! lt
is unfortunately not possible to specify sim-
ple x elements starting from y where x is

the number of columns Nor is it possible,
say in row 2, to have object 2, followed by
obiect 18 followed by object 6 0n the other
hand, you can specify that row t has
objects 5 to 7, row 2 has objects 1 to 3 and
row 3 has objects 3 to 5 * overlapping is

thus possible The object number used here
is simply their place findex) in the list of
objects that you have built up in level V: the
first object in the list is object number 0, the
second is obiect 1 and so on

The next parameters that need explaining are
x*spacing and y-spacing They contain the
"spacing list" This is obtained by the MK-ASL
(MaKe Application subwindow Spacing List) func-
tion, as follows,
x-spacing = MK*ASL (size%(n,l), indsizefi,
indspacg%)
where'

-, * Size?o is an array DIM sizeTo{m,l) where m is
the number of columns (not rows!) For each
element i, sizeTo(i,O) contains the hitsize and
sizeTo{i,l) contains the spacing of object i-1,

-) * indsize?o and indspacgTo ara optional para-
melers, they are used for the 'index bars',
something which nobody has ever really
understood, They are best left at 0, even
though they are explained later on

0f course, defining one spacing list is not enough
- we will only have defined the object sizes in
one dimension {the x axis), but what about the
other dimension, the y axis? Defining the spacing
and size for one dimension is not sufficient, we
know the sizes from left to right but not those
up/down So we must build a second spacing list,

for the columns this time. This list is build up in a
srmilar manner to the x spacing list above'

y-spacing = MK-ASL (size/"(n, 7), indsizez/",
indspacg2%)
where n is, this time, the number of rows minus 1,

Right, we have built the spacing list - now we
have to establish the 'control defintion". This tells
the Window manager how many "sections'there

are in the window (in each direction) and at what
row {or column) each seclion starts.
A'section'is just a collection of rows (or columns)
that can be scrolled independently lt is as if you
cut the window into 2 {or 3,4,5,..) independent
parts, each with its own scroll arrows. Many
windows only have one single section, but
several are possible.
lf all of your rows and columns fit inside the
window at once you don't really need sections
and, such a control definition rsn't really usefuland
it can be left at 0. ln Sbasic, the control definition
also allows you lo determine the colour and size
of the scroll arrows, in addition 1o the seclions
themselves.
The control defintion is made with the MK-CDEF
(MaKe Control DEFinition) function,
rctrldef = MI.'*CDEF (secmaxl, arrcoA/o,
barcoL% rbarseccol%)

QLlodoy 2t

x-ctrldef is then one of the parameters for
MK-APPW,
The parameters for MK*CDEF are as follows,

-, {< secmax?o is the number of sections.

*, * arrcal,/o is the colour for the scroll arrows.

-) * barcolo/o and barseccol0/o are the colours of
the index and section bars - again, leave
these at 0

With this, you have build a control defintion (here,

for the x axis). The same applies if you want to
have vertical sections,
y-ctrldef = MK-CDEF (secnax2%, arrcoL2/.,
barcolZ%ftarseceol2%)

Contrary to the spacing lists, you do not have 1o

have a controldefinition for each dimension. lf you
do not have a control definition for any direction,
the pointer may be left at 0.

Later; we will also have io initialise a definition
control array as follows,
DIM cty%(secnax%,2)

This will be used in the read pointer loop,
ctyYo(0,0) contains lhe number of current sections:
tven if you have provided for the possibility of 2
sections, there may be only one to start with, or
there may once have been two but the windows
have been joined later
ctyTo{O,l) is ,, 0 if the control definition has
changed.

Then, for each section i, elements (i,0), ti1) and (i,2)

remain. The contain the following information,
x {i,0) is the y position, in pixels, of the start of the
section within the window
* (i,1) contains the number of the start row {ie the
first visible row)
x (i,2) contains the number of rows visible in the
section.

I ndexes
lhe two last parameters for MK-APPW i,e, the x
and y indexes concern the index bars, and they
may be left at 0. lf you do fill them in, they must
contain the hitsize and spacing lists for the
indexes (just like the ones for the window), Here
are some details about the indexes. Menu
application subwindows rnay be provided with
"indexes" which are printed outside the menu
application subwindow - for example the number
of rows and columns in a spreadsheet To do this,
you must fill in all of the parameters concerning

the indexes I presume that Qspread (supplied by
JMS) does use these indexes * and if it does, it

must be the only application ever to have done
so.

Y - Level V: Defining the Object List

A - The obiect list

As we saw above, it behoves us to create an

object list, which contains all of the objects of the
menu application subwindow This list is set up
with the I'IK-AOL {MaKe Application subwindow
Object List) function
objlist = MK--A,0L(o1attr, oljus%, olkey$,
oltypef ,olstr$, olspr, o1b1b, olpat)

These parameters have the same meaning as
for the MK*L,L function (see my earlier instal-
ments in this series). Howeve[there is no para-

meter defining the window or the sizes (we have
already seen above how the sizes and spacings
are defined). Nor do we define the origin of the
object, which seems quite natural as the object
is part of a regular and organised menu. More-
over the object doesn't necessarily stay at a

fixed posiiion in the window as it is possible to
split an application subwindow into sections, and
join them together later on. ln addition, the menu
may be scrolled or panned, and thus the object
does not stay in a fixed position wilh respect to
the window Howeve[we must define the
attributes (same attributes for all objects) and
then the justification, selection key, type and
content for each oblect - these parameters
should all be pretty clear by now. ln the "files"

subwindow of QPAC2, the type is of course a

string and the content of the object is the name
of the file. Actually, the type will generally be a

string, but not necessarily so, as JerOme Grim-
berts examples in these pages have shown!

B - "Blobs" and "oatlerns"

A blob is a siructure that defines the shape of a

visual object This is similar to tracing a character
on the SCrCIen: with a character editor one can
define what pixel must be 'on" and what pixel
must be 'off' Howevel the character is only
visible when it is printed on the screen with any
INK on any PAPTR (ol rather: STRIP). This is similar

for blobs, except that you are not limited to the
size of one character

22 QL lodoy

Howevel a blob has no colour it just states that
this pixels is on but not that another pixel is not
on. lt does not say what colour the pixelis to be,
that will be defined by the colour pattern,

Thus, wilhoul a pattern, the pixel would be
invisible, because it would be transparent,
having no colour The blob is like a mask which
lets colour shine through or not.

A pattern is just the conirary - it is the definition
of a structure with colours, but without a
particular shape. By combining a blob {a shape
without colour) and a pattern (a colour without a

shape) we obtain something that is visible on
the screen. A pattern without a blob can't be
seen because it has no shape. Only the combi-
nation of the two produces something visible. A
sprite is an example of a blob combined with a
pattern, as it defines, at the same time, a shape
and the colour of each pixel within that shape.

Lel's re-use the example of the arrow which we
had used for the sprile, lt was something like
this:

90DATA r a I

100 DATA I awa I

120 DATA I awwwa t

130 DATA rawawawat

f/.0 DRTA I awa I

1r0 DATA I awa I

160 DATA I awa t

170 DATA I awa I

180 DATA t aaa t

This arrow can also be used as a blob because
it defines a shape. lt is lust that for the blob, it

makes no difference whether the colour in it is
'a' or "w" or anything else, The only thing that
counts is whether the pixel is transparent (' ' =

off) or not (any colour definition - "w","a","r","g"

etc means that the pixel will be on). The colour
itself is then filled in with the pattern. When the
above data is used as a sprite, the pattern is

made up from the colour information contained
in the arrow data. But if the above is used as a

blob, the colour information just tells us whether
a pixel is on or off.

Now we shall apply a pattern to this blob,

DATA r rrrarrrr

This mean that the arrow will be red, except for
the pixel in the middle, which will be black. This
pattern is applied to each row of the blob in turn
and it is the combination of both that produces a

visible oblect on the screen.

But why do it in such a complicated way when,
as when have seen for sprites, everything could
conveniently be made up in a single block? Well,

that's just why, if everything is in a single block,
you have to redefine everything if you want 1o

change just one colour lt for a sprite, I want
everything to be red instead of black, I'd have
the redefine the entire sprite. With a blob and a
pattern, I just design the blob and several pat-
terns and thus I can change colours as I want to,

by using different patterns with the blob...

As a pattern may be defined in a single line, this
is pretty fastl But a pattern may also be much
more complicated and there may be one pat-

tern line per line in a blob. This is what happens
for sprites. ln the above example wilh the arrow
QPTR makes up a blob and a pattern from the
information contained in the data: a blob makes
up the shape of the object, and there is a pattern
with as many lines as there are lines in the blob.

For the basic programmer using QPTR, pattern
and sprites are defined exactly like sprites -
you should just make sure that the sprite origin
is 0,0 because, of course, blobs and patterns
don't have origin (and if you don't understand
why not, even lhough a sprite has one, I'd
recommend re-reading the section on sprites!)

You will be happy to know that this concludes
the first big section ol this series. By now we
have seen allthere is about defining windows.ln
the next instalment, we'll be able to start on
actually making the window appear on the
screen.

Just a word of advice. lHave tried to cut up the
window information into dilferent levels, starling
at the top level, and then working down. When
you set up your window you would, of course,
do it the other way round, first you build the
lower levels and then you work your way up,

since you often need the lower level pointers

and parameters for the higher level ones,

24 QLlodoy

9
10
11
L2
L3
t4
15
16
t7
18
L9
2A
2L
22
23
24
25
26
27
28
29
30
3t
32
'1'1

31
35
36
37

window resize
sleep
wake
fL
t2
t3
t1
t5
t6
t7
f8
+,o

f10
f11
tL2
cf1
ef2
ef3
cf l+
cf5
cf6
cf7
ef8
cf9
cf10
cf11
ef12
cursor
winking cursor

NOTES
1. Sprites B to 37 are new system sprites.
2. sprites 6 and 7 are 'mouse pointers' and sprites
B and 9 are"window sprites'

Concluding Puzzle
1. A colour value in a working definition is $0220.
2. The 33rd entry in the systern palette linked to
the program is $0220. 3. What happens?

A PS - the Twice MT-RECHP Bug
The 3,xx versions of SMSQ/I do not adhere to
the original QL memory layout. Free memory
used to be found between SV-FREE and
SV-BASIC. ln the new versions of SMSQ/E the
space between SV-FRIE and SV-BASIC is

limiled to about 840K, the real{ree memory being
elsewhere.
However in v3.01, if MT-RECHP is called twice
with the same address, the memory seems to
revert to the old SV-FREE to SV-BASIC area. A
large amount of memory will then seem to have
disappearedl

Programming QPTR in

SBasic - next part
Wolfgang Lenerz

Obviously not.
(And if you're wondering whal this means, look at
the end of the last instalment!)

ll - Altering \findows

Several commands exist to change or alter
either a primary or secondary window entirely or
only in part (i.e. a sub-window or item),

A - Removing the window
First of all, a command to take the window away
entirely, which surely must be the most drastic
alteration...

DR-UNST workdef
where workdef is the working definition of the
window as obtained by ax-wmp. The command
will remove the window entirely, including all of
the subwindows {but not the secondary win-
dows, which should, howeve[have been re-
moved before) and will also remove the window
from the screen. lf the window was opened via
lhe nn-eur,ncall (i.e, it is a secondary window),
then the implicil and inaccessible screen channel
open by that command is also closed automati-

cally - actually this is the only legitimate way of
closing this channel {unless it is done by some
"external" operation, such as QPAC2's 'channels"

menu). lf the window was opened with Dn_ppo^q
then the corresponding channel is NOT closed,
and should be closed later on if need be. lf you
try to remove the primary window when secon-
dary windows are still open, bizarre things will
happen, so try not to do that - always close se-
condary windows first and the primary window
last

B - Changing the window
The size, position, content and certain attributes
of windows {and sometimes sub-windows} may
be changed.

1- Changing the size or oosition of a window
With the cn-vml'CHange WNdow") command
you can change the size or position of the win-
dow. This comrnand can only be used with se-
condary or primary windows bul not with any
sub-window and is used as follows'

CH-IIIN workdef f , xsize/o,ysize%7
When you use this command without the two
optional parameters, the window will change po-
sition, i.e. move about the screen. Under QDOS,
the pointer changes to the"move window"sprite,
you move it around and hit Space/Enter to signi-
fy to where you want the window to be moved..
Under more recent versions of SMSQ/E, it is also
possible to move the window itsell or its outline,

24 QL lodoy

around the screen, The movement of the pointer
sprite/window content/outline is automatically
handled by the Pointer Environment, the program-
mer doesn't have to do anything in particular
Using this command with parameters will result in

a change size operation,. The paramelers are:

-'* workdef is the working definition

-,* xsize% and ysize0/o are optional return para-
meters, As mentioned above, when omitted
they signify that the window should only be
moved and the programmer doesn't have to
concern himself with this {other than calling
the command), all is handled by the Pointer
Environment. However, a few things should
be considered when using this command,
even in"move'mode.

lf you move a {primary or secondary} win-
dow all sub-windows are automatically
moved with it. Since sub-windows are de-
fined relalive to the main window this is as
should be.

However il you move a primary window the
seconday windows are not moved at the
same time And this can result in quite some
unforeseen consequences. l-lence, never al-
low the user to move a primary window
when secondary windows are still open.
Look, for example, at the QPAC2 "Files'

menu - when the F3 commands menu is
opened {this is a secondary window), you
cannot use the items in the primary window
and thus cannot move lhe window about the
screen. To do that, you first must close the
seconday window

Moreove[if you have opened a channel
over a subwindow or an item (more about
which later in this series), the channels ARt
NOT moved with the window - thus, after
each move operation, you should re-open
them again over the sub-window or item

When xsize% and ysize% are not omitted,
this means a change size operation. The
pointer will change to the usual change size
sprile which you can move about the screen
to click and signify how much you want the
window to change size. At the click,
command will pass back to the program.
Remember that xsizeTo and ysize% are
RETURN parameters. These variables then
conlain, upon return from this command, the
displacement {+ e1 -) of the point* in pixels,
from the moment the command was invoked
until the user's click For example, if the

pointer was at {100,100} at the time the
command was invoked and if the poinler rs

then brought to {210,100) and then the user
clicks, xsize% will contain 110 and ysize%
conlains 0. lf the pointer was brought to
50,110, xsizeTo will contain -50 and ysizeTo

10. And so on.

It is then the programmer's responsibility to
re-draw the window entirely taking into ac-
count the changed size as expressed by the
user lt is not obvious how to achieve this -
in fact, the best way is to remove the win-
dow entirely, make a new working definition
and put the new window up on the screen.
ln my opinion, this is one of the most feeble
aspects of the Pointer Environment, other
operating systems {even Windoze} do it
better than that, somelimes even clipping
the window automatically

2) - Changing the pointer
At some time, it might be interesting to change
the pointer of a primary or secondary window
One can even change the pointer for an applica-
tion sub-window {but not for any other sub-win-
dow). This change is achieved with the cH*prl
(CHange PoinTeR) command,

CHITR workde f , win-nbr%, new-ptr
-, * workdef is the working definition of the win-

dow

-, * win-nbr% shows the number of the window
or application sub-window to be changed, 0
for the first application subwindow 1 for the
second etc... lf you want to change the poin-
ter for the entire window and not only an
application sub-window use -1.

-, * new-pfr is the address of the new pointer
to be used, as returned by SPRSP. lf this pa-
rameter is 0, then the default pointer is used.
For a primary or secondary window the
default pointer is a small arrow. For an
application sub-window the default pointer is
the pointer used by the primary (or secon-
dary) window enclosing it.

3 - Changing the content of a sub-window,
obiect or item
The following command allows us lo change an
object in a subwindow whether it ls an informa-
tion subwindow or an application subwindow.
One can also change the content of a loose
menu item with this command, CH_ITEM
(CHange ITEM).

QLlodoy 25-

CH-ITEM lrorkdef, win-nbr%r obi-nbr%,
tpe%, key$, value

-, * workdef is the working definition, as usual

-) * win-nbrVo is the number of the sub-window
to be changed. Here, the following rules
must be observed:

-, lf win-nbr% is *1, it signifies a change in

the main window ie. a change in a loose
menu item only.

-) lf it is a negative value n other.lhan -1, it
means an information sub-window calcu-
lated as follows, ABS {n) *2. Thus -2
means information subwindow 2-2 = A.

-3 means information subwindow 3-2=t,
and so on...

-) lf it is a non negative value n, il means
the application sub-window n+1' 0 is the
first application sub-window 1 the se-
cond etc...

-, * obj-nbr% contains the number of the ob-

iect (or loose item) to be changed. The list

starts at 0, as usual.

*, * type% is the NEW type of the object (text,

spriie, blob or pattern, using the usual
values).

-) * key$ contains the NEW selection key for
the item or object {obviously, this is not
used for objects in an informalion sub-win-
dow which have no selection key). Use an
empty string {"") if you want to keep the old
selection key, or a nul value string {CHR$(O))
if you do not want the object to have a se-
lection key.

*, * yalue contains the new value, The type of
that depends on the type of the new object
{as indicated by type%}- this will be a string
for text items, or a pointer to a sprite, blob
or pattern for those oblects that need one

C - Redrawing nart of a window
Once the content of an item, object or sub-win-
dow was changed, that {sub-) window containing
it must be re-drawn. For loose menu items or
menu application subwindow objects this can be
done automatically without using any special
command, but there are also commands to do it
explicitly
The implicit way (which does not exist for infor-
mation sub-windows and their objects and lhus
only exists for loose menu items or the objects
of an application sub-window) is to set the'flag'
of that item to a certain value, which shows that

one wishes this object to be redrawn.
lndeed, we saw earlier that the pR-ppos and
DR-puLD commands use 'flag" arrays for the
loose menu items and for the objects of menu
application sub-windows. I even explained how
these flag arrays are used to set and show the
status of the items when they are drawn initially
These two types of flag arrays are also used by
the ap-prncommand, which is the main way of
reading the pointer and which was explained in

an earlier inslalment of this series
ll before using this command, the value of an
element of the array is set to the value of the
status wished plus one, then the corresponding
loose menu item or menu application sub-window
object is automatically redrawn when the
RD-PTR command is next called, As we saw
earlier a value 0 in an array element means that
the item is available, 16 means it is unavailable
and 128 means the item is selected.
Thus, if I wanl an item that was unavailable to
become available, I just have to place 0 + 1 in the
correspoding flag array element. The item will
then be redrawn wilh the new status at the next
call upon EDJTR And, if the content of that item
had changed in between (using ct-rrE$, il will
be redraw with lhe new content. You don't even
need to change stalus: an available item {value 0)
willbe redrawn as available if the value is set to 1.

Now, let's look at the explicit redraw commands,

1l Loose menu rtems
The command DL-LDEV {DRaw, Loose items
DRaW) is used to redraw one, several or all

loose items. lt takes the following parameters:

DUDA I workdef ,lifflag%

-, * workdef is, as usual, the working definitions
of the window concerned {which contains
the loose menu).

*, * lilflag% is the same integer status array as
tor oLlurn.

Of course, before using this command, you
should place suitable values into the array, cor-
responding to the slatus of the items wished
Then you add 1 to the items statuses - only the
items that have this change flag set will be
redrawn * with one exception, however,
lf NO element of the status array has the change
flag set, then ALL of the items are redrawn, The
logic of this is hard to fault - after all, you are
only going to invoke this command when
SOMETHING at least has changed - if nothing is
then pointed out via the change flag, then all of
them must be redrawn.

26 QIlodoy

Most of the effects of this command can easily
be obtained by just setting the change flag in the
status array {adding 1 to each status) and calling
EDJTN

2) Application sub-windows
To redraw an application sub-window use the
command DR-ADRv (DRaw Application sub-win-
dow re-DRaW), as follows'

DR-ADR\I workdef, win-nbr%, appflag%
[, ctrldefxl, ctrldefyf)
Here, all parameters are the same as for the
DR-PULDiDR-PPOS commands {except for the
win-nbr0/o parameter): working definition, flag
array and the control definition arrays. The
win-nbr% parameter contains the number of the
application sub-window concerned {starting at 0
as usual).
This is a more practical command than that con-
cerning the loose menu items, because you can
also change the control definitions, ln that case,
you should not forget to set element {0,1) of the
changed control defintion to 1, to signal thal it
has, indeed, changed

3 - lnformation sub-windows
Nolhing can change status in information sub-
windows - there are no items, But an inforrnation
subwindow can be redrawn entirely and thus a
changed conlent be put on the screen This is
done with the command DR-nDRIr (DRaw

lnformation sub-window re-DRaW).

DR-IDRV workdef , info-:rbr*'* workdef is of course the working definition.

-,* info-nbr is a bitmap which indicates the win-
dow to be redrawn, for each information
sub-window there is one bit. lf this bit is 0,

then the information sub-window must be re-
drawn, else it will not be redrawn lnfo-nbr is
a long word {32 bits) and this command can
thus 'only' be used for the 32 first informa-
tion sub-windows (that SHOULD be
enoughl). Bit 0 is for the first information
sub-window, bit 1 for the second and so on.
Thus, if info_nbr = HFX$('FFFFFF[') rhis
means that information sub-window nbr 0
should be redrawn.

lll - How to set a Channel over a
Sub-Window

The main problem with sub-windows is . that
they don't existl At least not for the normal pro-
grammer As was already mentioned, these win-

dows are not windows in the normal QL sense of
the word. They have no channel attached to
them, they are internal Pointer Environment sub-
divrsions (not even inaccessible channel as the
one opened by DR-PULD for secondary win-
dows).
Actually, this makes sense. A typical Pointer Envi-
ronment window has many loose menu items,
several information sub-windows and often one or
several application sub-windows. lt would not be
reasonable lo give each of them its own channel
and channel lD - not only would we risk running
out of place in the channel table, but also, each
channel takes ils own slice of memory So, there
are no channels associated with the sub-windows.
Howevet sometimes it is necessary to have a
channel that "covers' a sub-window or an item.
This is useful, for example, when one is supposed
to lype somelhing"into"a loose menu item
The solution consists in opening a normal "CON'

channel and setting it over the item or sub-win-
dow Once the operation is finished, the channel
can be closed again, if need be.
There are three commands to place channels
over each of the two types of sub-windows (infor
mation sub-windows and application sub-win-
dows) as well as loose menu items. I have alrea-
dy pointed out that, when the window is moved,
these channels do not move with it, and thus,
after each change in the window's position {or
indeed size), you should re-set the channels over
the sub-window or itern concerned.
0f course, the channel to be set over the sub-
window or item should be a "CON" channel,
opened beforehand

A - Setlinq a channel over an aoolication sub-
window

This is done with lhe nalvot command,

DR-AVDF #channel, workdef, app-wdw%
sets a channel over the application sub-window
the number of which is given by app-wdwYo. As
usual, the count starts from 0. You will, by now
have guessed that workdef is the working
definition of the window enclosing the application
sub-window and "schannel" is the channel to be
used.

B - Setting a channel over an information sub-
window

DR-IDF #channe1, workdef, info-wdw%
sets a channel over the informalion sub-window
the number of which is given by info-wdw0/0. As
usual, the count slarts from 0 You will, by now
have guessed that workdef is the working defini-

28 QL lodoy

tion of the window enclosing the application sub-
window and'Echannel"is the channel to be used.

C - Selting a channelover a loose menu ilem

DR-MDF #channel, workdef, iten%
sets a channel over the loose menu item
number of which is given by app-wdwO/0.

usual, the count starts from 0.

It is up to you whether you open and close the
channel alter each operation, or whether you
keep open a genral putpose"con"channel which
you sel to the sub-windoWitem each time it is
necessary

OK, that's it for now More next lime.
the
As

How to read QL disks on
aPC
Jimmy Monlesinos

Before beginning
Disks that have been formatted on a QL cannot
be read directly on a PC without some special
software, such as a QL emulator Also, normally
disk interfaces on the QL will only format DSDD
disks {1440 sectors = 724 Kbytes)
lf you use the more common form of HSDD disk
of {2880 sectors = 1.44 Mb) lor your PC, you can
put sticky tape across the hole on the left of the
disk {not the hole which is used to make the disk
read-only). lf you do this, the computer will think
that the disk is only a DSDD disk.

Preparation of a disk
With the use of a small utilittr you can format a
disk on the QL, store dala on it and later read that
data on the PC

This utility is: QLTOOLS 2.7 and was written by:

Giuseppe Zanetti, Valenti Omar Richard
Zidlicky and Jonathan Hudson.
It is possible to download it from,
ftp://ft p. nvg.unit.no/pub/sinclair/minors/ql/demon/

Qltools2T.nt.zip is for use under Windows 2000
or Windows XP You might also wanl to read the
following web-page of Richard Zidlicky,
http://www.geocities.com/SiliconValley/Bayl2602/ql. html

After decompressing the file qltools. exe oflto
your PC's hard disk, place an empty disk in the
PC's disk drive and from the RUN command in the
Start menu, type:

Qltools \\.\a: -fdd Q].Floppy
(\\\a: is the description of the lop disk drive in a
PC that uses Windows NT/2000/XP - there is no
space between the full stop and the backslash.)

Later it is possible to format the disk from the QL
Place the disk in the disk drive of the QL and

enter the command:
FORMAT FLPl*QtFloppy
There is a delay and the QL screen shows,
t440lt44O seclors

This part is needed only if your originalQL floppy
cannol be read directly by QLTOOLS, which
should not happen with most disk interface like
Sandy QBoard, GoldCard etc

To copy files from the QL to this disk
Now is the time to transfer the origina! files of the
QL onto this new disk,
lf you have the TK2, you can for example use,
WCOPY IVIDVI* TO FLPI*
Afler responding a {"ALL' Files) all the files on
MDVI- will be copied to FLPI* {the floppy disk),

ln order to copy all the files of a QL disk to this
new disk the best thing is to use the Ramdisk,
This can be done with the following instructions:
FoRMAT ru,ut-r/r4o
Then insert the original disk and enter,
UCOPY FtPl _ TO RAM1 _
and answer l{All files),

Now insert the disk prepared on the PC and enter
WCOPY RAM1 _ TO FLP1 _

To read and use the files on a PC

under QPC2
The users who have the best QL tmulator in the
world {QPC 2) can directly read the files of this
disk using the same instructions as on the QL,
such as,
DIR FLP1 -
LRUN FtPl-boot
COPY FLP1 _ TO WIN1 _
etc...

You do not need to prepare a special disk for this
and can use lhe originalQL formatted disk, QPC2
willeven allow you to read from and save to a PC

formatted floppy disk drrectly (the standard QL
can read these disks with a variety of tools). lf
you copy an executable file to a PC formatted
floppy disk, you have to remember two things,

QIloday 29

Prograrnming QPTR

BASIC - third part
Wolfgang Lenerz

Reading th Pointer
Reading the pointer will enable you to get the
user's response to the different possible menu
aclions. This, of course is a paramount part of
programming in the Pointer fnvironment. You

have the choice between two diflerent methods
of reading the pointer with three different
keywords {two of which are very similar). The
first method is the mosl interesting, even though
the second, a directy pointer read, can also be
useful.

| - Reading the pointer indirectly
This method makes our programming much
easier lt is structured around the RD-PTR (ReaD
PoinTeR) and the RD-PTRT (ReaD PoinTeR
with Timeout) keywords. When one of these
commands is used, the pointer is drawn on the
screen {in the shape determined by the working
definition). The user can move the pointer via the
mouse or the keyboard cursor keys. The com-
mands willonly come back to the program when,

1) The user did {and in some cases hit) an item
in a menu or an application subwindow {or
used the respective selection key) and

2) this action did happen in this window
nothing will happen il the user clicked out-
side of the window

3) With the RD-PTRT keyword, a return can
also be made when a timeoul or "job event'
occurs.

The advantage of this command seems obvious,
it handles all of the changes in the pointer shape
and state, notably if you have specified different
pointers for application subwindows: the pointer
will automatically change when it is brought over
such an application subwindow. Likewise, when
the pointer is moved outside of the primary win-
dow, it may change shape and become that of
another window or the default sprite {an arrow)
or a sprite showing that lhe window underneath
is not a managed window or expects keyboard
input etc.

A click outside of the window is not acted upon,
and, in fact the command only comes back in

case of a timeout or job event {for RD-PTRT)
and when the user somehow actioned some-
thing inside of the window.

tn
That's very practical for the programmer When
the command returns to the program, return
parameters indicate what happended. Thus, there
are a LOT of parameters for this command, but
they are all pretty logical, We'll start with the
RD-PTR command,

1 - RD_PTR

RD-PT? workdef, iten%, subwin%, event/o,
xreL%, yteL%, liflags% {g,appflags%
[, ctrldefx%, ctrLdetl%]J]

Quite a moulhful!

The parameters are the same for both RD-PTRT
and RD-PTR, and they are as follows,

-, * warkdef is the window working definition
The window can be a secondary or a pri-

mary window according to how workdef is
set up. Unfortunately when lhere is a pri-

mary window and a second window it is
not possible to choose in which one of
these you want to read the pointer: indeed,
if you open a secondary window"over" a
primary one {e.g. the "commands menu in

the QPAC 2 FILFS program) the secondary
window locks the primary window over
which it is pulled down and which il covers
totally or partially. The primary window thus
no longer is the window on top and can'l
read the pointer anymore.

', * item?o is a returns parameler lt contains the
number of the item the user hit or did, and
which caused the command to return. The
return mechanism is as follows: lou ffia!
remember that one of the parameters for a
the definition of a loose menu item or a

menu application sub-window is its type
{text, sprite etc} to which one adds 256 or
-256: this type will then determine how the
item reacts when hit/done,
- lf nothing is added to the item type , then

this item acts as follows when actioned' if
the item is hit, it just changes state - if

selected it becomes available and if avar-
lable it becomes selected, but it DOES
NOT cause the RD-PTR command to
return. lf the item is done, it changes state

{to show that it was selected and hit) and
then causes the command to return.

- lf -256 is added to the items type, both
actions {hit or do) will produced the same

16 QIloday

result, i.e. a change of state towards
selected {or available if the item was
already selected) and a return form the
RP-PTR command loop.

- lf 256 is added to the item type , both a

hit and a do will, again, have the same
result: the item will cause the RD-PTR{T)
command to return to basic, but the item
state will automatically be reset to availa-
ble, without any programmer intervention.

These last two cases {256 and -256) thus
cause an "automatic return" from the item
when it was hit or done.

-, * subwin% is also a return parameter lt con-
tains lhe number of the {application) sub-
window in which the pointer was located at
the time of the user action. lf the pointer
was nol in an application subwindow but
on a loose menu item or anywhere else in

the window {an inforrnation sub-window for
example) then this parameter will be -1

With this, you can determine and find out
whether the user clicked a loose menu
ilem or an item in an application sub-win-
dow

-' * evenl%, again a return parameter contains
the "event" lhat caused lhis return. This
"evenl"may be either the fact of aclioning
an item/object, or the press of any of the
following keys: ESC, t1, CTRL F1, CTRL F2,

CTRL F3 or CTRL F4. To each of these
keypresses corresponds a certain event,
and each event has a code which is thus
returned in the eventTo return parameter
These codes are'
1 = D0 : an item was done (ENTER)

2 = CANCEL, ESC was pressed
4 = HELP r Fl was pressed
B = MOVE ' CTRL F4 was pressed (move

window)
16= SIZE , CTRL F3 was pressed {change

window size)
32= SLttP : CTRL Fl was pressed (make

into button)
64= WAKE : CTRL F2 was pressed

{wAKE}
128= HIT on an item with an automatic

return.

Thus, the above keystokes will also cause
a return from the RD-PTR(T) pointer read
loop.

u * xrel% and yrel% are lhe pointer coordi-
nates al the time when the event caused
the return to the program These coordi-
nates are relative to the upper left corner
of the window (ot the applicaiion sub-
window) in which the pointer was when
the return occurred.

' * liflags% is the same flag array for loose
items as that used for the DR-PULD and
DR-PPOS keywords (see in an earlier in-

stalment of this series). Remembq these
flags may have a value of 0, 16 and I2B. rl
you add one to these values when calling
the RD*PTR command, then the item will
automatically be redrawn in the appropriate
slatus.

-) * appflags06 is the same flag array for
application subwindows that is used in the
DR-PULD and DR-PPOS commands
which we treated in an earlier instalment of
this series. Just like for loose menu itmes,
if you set any value of these flags arrays
to the status +1, the items will be redrawn
automatically upon entering this command.

-' * ctrldefxTo and ctddefy% are the application
sub-window control definition arrays.

Using this command is pretty easy because it
only causes a return for well defined evenls. lt
can get included in a pointer read loop which will
be about as follows'
REPeat loop

RD-PTR <paranetersr
post=item$:REUark SEi,ect on floats only in QD0S

SELect 0N sublrin
=-l : rem loose menu item

SELect 0N post
=1: do-this
=2: do-that
=J: something_else
... etc...

END SEI"ECT

=g : ren cliek in first menu appsub wdw

SELeet 0N post

nl,Il'SAl".t
END SELeet

END REPEAT loop

Thus, one reads the pointer and when the return
was made, one uses the subwindow and the
item to determine, first, in what subwindow the
event occurred and, second, what action should
be taken for this event.

Q,Lloday t7

2 - RD-PTRT. timeouts and iob events

The RD-PTRT keyword is pretty similar to the
RD-PTR keyword. Both use mostly lhe same
parameters, except that the RD-PTRT keyword
has one additinal parametel a timeout, as follows,

&DJTRT workdef, item%, subwin%, event$,
timeout%r xrel:/', yrel:/ , liflags%
{ [, appfla gs?l' l, etrldefxol, ctrldefyfi] I]

The wordkdel item%, xrel%, yrel7o, liflags%,

appflags%, ctrldefx% and ctrldefy% pararneters
are the same as for RD*PTR and thus don't
need to be described here anymore.

There are two changes with respect to the
RD-PTR keyword,

First of all, there is an additional fimeout% para-

meler With this you can indicate that you also
want a return from the keyword alter a certain
time. ln usual QL fashion, the timeout is given in

1l50th of a second (me thinks, in North America
it is in 1/60th of a second).

Thus, you can also make sure that you return
from the read pointer loop after a certain period
of inactivitlr Mind, though, that the return will be
made either because of a 'normal' event {includ-
ing "job events, which I'll explain below) or be-
cause of a timeout - whalever comes firsl!

When a return from a timeout occurs, the event
parameter is set to -1, which is a value it doen't
normally have. This allows you to distinguish
between normal events and a timeout.

Speaking of the event06 parameter this has been
modified a bit. lt still has allof the functions as for
the RD-PTR keyword, but has been extended.
You can also use it as an entry paramter for the
RD-PTRT command, to pass it some 'job

events"on which the keyword will also return

Job events are a relatively recent addition to the
Pointer Environment. They are an easy, legal and
(now) documented way for one job {program) to
communicate with another One program can
send another an "event'. The other program re-
ceives the event through the read pointer loop.
There are B events, contained in one byte, each
bit representing one event

Sending an event is prelty easy and uses the

typical TK ll fashion of delermining a job:

SEND-EWNT j ob-id, event
{the iob-id is a composite number: 1ob-tag x

65536 + job_nbr),

or
SEND-EWNT ttjob-nane", event
or
SEND-EWNT j b-:rbr, j ob-tag, event

For example'
SEND--EVENT trQui11't, 3
will send events 1 and 2 to Quill. This wouldn't
mean a lot, since Quill isn't equipped to receive
events, but it could be done.

When the program is a pointer program, it will
receive the event throught the pointer read loop.
ln SxBasic, this event may cause a return from
the pointer read loop, "May'not 'will'- at least not
necessarily.

lndeed, the eventYo parameter will indicate, on
entry to the command, what 1ob events the
program is ready to receive. lf the eventYo
parameter is 0, it is not ready to receive any
event. lf event% = 1 * 256, it is ready to receive
event 1, if it is 3 * 256, the program is ready to
receive events 1 & 2 and so on.

As you can see, the event is passed in the high
byte of the event% word, thus just multiply the
events to indicate by 256, There is one problem'
if you want to indicate that you are ready to
receive all B events, you would normally have to
pass 255*256. This will cause an errot, so use -1

instead.

On return from the read pointer loop, the job
events are contained in the upper byte of the
evento/o word.

There is also a way to get an event without
reading the pointer,
resultf'VAIT-EWNT (events% 1, timeout%l)

This will wait for timourTo ticks {if this parameter is
not passed, it waits forever) until on of the
evnts% passed on entry happens. The event{s)
are returned in resultTo

This was the easy way to read the pointer: Next
time, we'll look at a more circumvallated way of
doing this.

QL Foreverl

18 QL loday

The menu colours are almost
entirely defined as $2xx sys-
tem colours, then you can
choose paletie 0 to 3 and load
your favourite theme there

{using QCoCo or the Colour
Utilities Disk) You can change
colours while the program is

running Also in mode 4 you
can now use the familiar pa-

lettes known from QMenu and

Qpac2 There is a small SBasic
program to set a system pa-

lette to the oid Suqcess co-
lours (and make all the other
applications look like a Suq-
COSS ;-)
One remaining snag is that the
scroll/pan arrows colour can
not be sel For that I made a

small procedure io set these

colours just before the applica-
tion window contents are
drawn, using;
MAI,rISETUP #ch\subw, . ..
set colours in the Working

Definition'
MAWDRAW #ch,subw
Only the application window
border colour remains stubborn
and is set to a mode 4 "gray"

stipple, which should be ok for
most colour schemes.
The whole EasyPTR package
needs a big overhaul to bring it
to GD2 standard but with the
help from some experts we
managed to find a workaround
for most problems, except for
the "gray" stipple Something to
do for the next update.

Compared to the previous Suq-
cess version 1.19 there is not
much functionality added to
version 2. You can now open a

database 'Read Only", some
bugs were fixed improvements
made in View in Direct Sort and
to a few prornpts Every Loose
llem now has a key attached to
it Further changes were mostly
in the "looks" department. Suq-
cess2 only runs under SMSQ/E
3 because of the new colour
commands A trial version can
be downloaded from Wolf-
gang's site'

www.uhlich.nl/ql/

Full versions can be obtained
from Jochen Merz Software.
They come in English, German
and Dutch flavours

Programrning QPTR in

5* Basic

(Part 10)
{lt seems we somehow lost track of the part
numbering in previous issues, but 10 should be
OK now).
Wolfgang Lenerz

We follow on {rom the last instalment by
examining, this time, a more convoluted way, even
if il is a "direct pointer read"

II - READING THE POINTER DIRECTLY
With this command the pointer can be read at any
time and the return from the command can be
either immediately or at the occurence of a

certain event, as specified by the programmer
Contrary to the RD*PTR command that we saw
last time, there is only one command, RPTR (no
"RPTRT") Howeve[RPTR also takes into account
job events This command {Read PoinTeR) takes
the following parameters:

fiP?fi xabs%, yabs%, end%, winnurnf, yreL%,
yreL/", return$

-, * endYo is a variable that determines under
what conditions this cornmand returns to
the programmer The conditions are deter-
mined by setting individual bits in this varia-
ble to 1, according to what one wishes.
The following table contains the return
conditions, if the corresponding bit is set
to 1,

Bit set return if,

tol

0 a keyboard key, or a mouse button is
pressed

1 keyb key or mouse button continues
to be pressed

2 the key or button is released
3 the pointer moves away from the

given coordinates
4 the pointer is, or moves out ol the

window
5 the pointer is in, or moves into the

window
6 NEVER set to lllll
7 'special'mode

Most return conditions may be mixed
together at your heart's conient: if you set
both bits 4 and 5 to 1, then the command
will return immediately because the pointer
is always either in or ouside of the windowl

-36

QL loday

You may set any individual bit in this
variable to 1 by first setting the entire
variable to 0 and then adding 2^x to this
variable, where x is the positron of the bit
in the variable lf I add 2^ 4 1=16) I set bit 4
to L So, bY adding 48 1=16 + 32 = 2^ 4
+2^5) I set bits 4 and 5 Of course, you
musl add this only ONCI for each bit

The "special mode'which is chosen when
bit 7 is set, will lock all windows of all other
jobs and show a special sprite, which can
be,

- the change size sprite, it bit 1 is also
set to 1

- the 'move window"sprite if bits I and
0 are both 1

- the"empty window'sprite if both bits 1

and 0 are set to 0

When bit 7 is set to 1, all other bits {except
0 and 1) should be set to 1

This parameter is also used to set the job
events on which one wishes the program
to return We discussed the job events last
time, please refer to the last instalment of
this series

The job events are included in the high
byle of the endYo word To set any of these
events, proceed as above {2^x where X is
the event numbe[from 0 to 7) but then
multiply that value by 256 (Note' from
S*Bazic, you can only set the first 7 events

{0-6) and not event nbr 7, as that would be
exceed the value of an integer rn SxBasic.
You would need to use a negatlve number
for that). So, to set job event n' 2, l'd add
(2^21*256 to end end% variable

-,* winnumTo contains the number for the main
window (=-1) or the number of the applica-
tion subwindow to which the pointer read
should apply (especially to know whether
the pointer is in the {sub-)window or not).

-, * xrelok and yrelYo, which are return parame-

ters, contain, on return, the pointer coordi-
nates in the window or in the application
sub-window in which the pointer was when
the command returned.
They are both relative to the origin {upper

left hand corner) of this window or applica-
tion sub-window

-' * xabs% and yabs% are used when bit 3 of
end% is set to 1 They then contain the
ABSOLUTE pointer position - when the
pointer moves from this position, the
command will then return.

These parameters also contain, on return,
the absolute position of the pointer {in all

circumstances). Again, this is relative to the
screen origin (upper left hand corner)

-' x refurn$, another relurn parameler contains
the character code lchr$) of the key
pressed, or one of the following values,
with the following meaning'

Kcr__eqnlent of ret urn$-CHB$- Mean i n g

none 0 no key pressed
SPACT/left button 1 Hit
TNTIR/right button 2 Do
ESC 3 cancel
Fl 4 Help
CTRL F4 5 Move window
CTRL F3 6 Change window

CTRL Fl
CTRL F2

SIZC

7 Sleep
B Wake

Thus, with this command, you can also read the
pointer lts disadvantage is that it doesn't take into
account any loose items etc... lt is thus more
difficult to use than the RD-PTR command and
doesn't use all of the facilities offered by the
Pointer Environment.

That's it for today. lf you've been following this
series continuousy you shouid now have a firm
grasp of the concepts used by the Pointer Envi-
ronment, and also how to use them from SxBasic.

Next time, we'll look at some additionalkeywords,
which will probably conclude this series

QL lodoy 37-

CDACI/^ I sa& nr,&rJu^JtL - Lcl)L PCil t
W.l-enerz

Additional Commands

The QPTR extensions conlain some additional
S*Basic keywords, as follows:

I - Commands for fhe mouse and ft?e
holkev sysfem

Several keywords are concerned with the mouse
and access to the hotkey system 2) picking a jOb

Programnning QPTR in

A - Accessing Hotkey System ll

The hotkey system is closely linked to the
Pointer Environment and two commands give
you some access to il.

1l Filling the Hotkev bufter

The hotkey buffer (also called 'stuffer buffer") is a
small buffer that you can fill with strings which
you can then get at by hitting the hotkeys ALT +
SPACE {or ALT + SHIFT + SPACE) together This,
however is only possible once the Hotkey job is
running, which is achieved via the HOT*GO
command of Hotkey System ll (if you don't have
the HOT-GO command, then you are still using
Hotkey System I * an immediate upgrade is really
necessary).

As soon as the hotkey is hit, the conlenl of the
stuffer buffer will be stuffed {hence the name)
into the current keyboard queue (just as if you
had used the old ir tt ntttey sysiem - pteise
nole that Hotkey System ll will get rid of the
Altkey used by TK ll, else too many roulines
would compete for access to the Altkeys). The
effect is that the string appears as if you had
input it via lhe keyboard

The stuffer buffer can also be filled by other
progrdffis: thus QPAC2's FILIS menu puts lhe
names of files selected into the stuffer buffer So
does QD with the names of the files saved/
loaded. FiFi can also do this, and so can others (l

would really like this to be a configurable feature
of every program, though). Recent versions of
SMSQ/F will also put a string currentiy being
edited with the INPUT command, or by programs

using the "edit line" trap, into the stuffer buffer
whenever F10 is hit during editing.

With the HOT*STUFF command, you can explicit-
ly put a string into the stuffer buffer: The syntax
of this command is'

FI0T-STUFF a$

a$ is the string to be put into the buffer: \iou can
put several strings in there by passing them as
parameters separated by commas,
HOT-STUFF a$,b$, e$,d$. ", .

the string a$ will be put into the buffer first.

You now know that jobs (or their windows) are
crganized !n a stack. The job the wrndow of
which is on top of the stack will have its window
unlocked. With the PICK function, you can bring a
job to the top, where its window will be visiSle
and unlocked. This is like a repeated CTRL +C,
but more targeted to a specific job, lnstead of
just cycling through all jobs as does CTRL + C,
\//\t r .an Dl/'.Ll rnt, nnnaifin ;^r- ',^, , rr,^^+
Jvu vqr I I tvt\ ot ry JpgLiltu JUU yuu wdllt.

The syntax of this function is:

result = PICK ([#channel,] JobID) or,
result - PICK ([#ehannel,] key)

As usual, if you do not specify a channel numbe[
channel tl will be taken as default

The 1ob lD can be specified as "job number: job
tag', which is what is returned by the TK ll JOBS
command. You may also use a single number,
job*tag x65536 + ,job_number

The 'key" may be -l or -Z.lf you use a key of -1,
then the job al the boltommost place will be
picked to the top lf you give -2 as key, then the
same thing happens, but the window of that job
will be marked as unlockable: its output will'al-
ways be visible as soon as it changes

B - fvlouse commands

1 Filling the mouse butfer

ln a similar way that we have a Hotkey Syslem ll

stuffer buffer, there is also a mouse buffer - but
this is severely more limited. lndeed, the buffer

54 QL fodcp

holds only two characlers at the most lt can be
filled wilh the MS-HOT command.

The content of {he mouse butfer may be re-

lrieved by clicking both mouse buttons al the
same time - this buffer thus is only for those thal
do have a mouse...

The syntax of this command is'

MS-J{0T f#channel,], a$

where a$ is a string of lwo characters at the
mosl.

As usual, the channel number will default to ul if
you do not specify it.

lf you pass an empty string then clicking both
mouse buttons at the sarne time will no lonqer
have any effect at all,

The interesting thing aboul the mouse buffer
(and this is conlrary to the stuffer bufferi is thal
{he mouse buffer is polled before the Hotkey/
Altkey routines poll the keyboard, Practically, this
means that vou mav use the mouse buffer cha-
racler 1o sel off a hotkey * when you click both
mouse bultons, this behaves as if you had hit the
corresponding hotkey To achieve this, though,
you must fill the mouse buffer with two charac-
ters, the first must correspond to the ALT key (ie.

CHR$(255)) and the second to the Hotkey you
wish io activale

2) ehanging mouse speed_ and wake up

You may change the mouse speed and wake up

time

The mouse speed {or "acceleration") determines
how far the mouse pointer moves on the screen
whenever you move the mouse on your desk {or
whatever). Grossly' if the speed is high, the poin-

ter moves a lot with a feeble mouse movement. lf

lhe speed is low the pointer moves less and you
need to move the mouse a lot further to move
the pointer on the screen The speed also com-
mands the gradual acceleration of the mouse
pointer when the pointer is moved via the cursor
keys rather lhan the rnouse.

The rnouse "wake up' is the mouse movement
that is necossary lo show the pointer on the
screen when the pointer rsn't already visible, for

example if it is in a window that is waiting for
keyboard input (blinking cursor), This can be
easily seen in a Basic inpul window The pointer

,normally isn't visible in that window, it becomes
visible when you move the mouse liy it, you will

see what I mean.

The command for {his is MS-SPD and its syn?ax
is,

MS-SPD acceleration [rwake-up]

Both parameters range from 0 to 9 and lhe wake
up parameier is an optional parameter

You can also use the QPAC ll "SYSDEF" menu
and see how these two parameters change the
behaviour of the mouse.

ll-Csmmn dE {,or " Etob s an d- Pa f f ern-s.

Blobs and patterns were already defined ln an

earlier instalment of this series, please refer there
if in doubl.

Thnrn .ra carrnrll nnmmrnrlc rrrhinh mrlzn lhntttLtu qtu JLvutqt vvrrilrtqt rwJ vvtilvrr rrrur\! rrrv

use and creation of blobs and patterns a bit
easier,

A - Pattern creation

Here is a command that rs useful to creale a
pattern of a bit more complicaled design. lndeed,
you may wish to design an image {for example
with a painting program) and converl it inlo a
pattern later on This is pretty nifty as you don't
have to care about how to make a pattern in the
more complicated way The command for lhis is
MKPAT

MKPAT address,buffer

-, x buffer is a buffer holding the painting,

which was created, for example, with the
PSAVE function {which was already
covered in this series) The content of this
buffer will be transformed into a pattern
which will be pui al address.

-, * address is the address in memory where
the image converted into a pattern will lie.

You must have reserved this address (for

example wilh RESPR or ALCHP) and have
enough space at the address for the resul-

&L fodey 22JJ

trng pattern {including the header}, This ad-
dress can then be used whenever you
need a pattern.

Thus note that you need to know the memory
srze for the pattern before you start thrs opera-
tion. You can get to know the necessary size by
using the SPRSP funclion which we already have
seen in an earlier instalment of this series - just

use the x size of the buffer and half of the y size
of the 'buffer' - and then add 18 to take into
acount the header

The pattern (and the image in the buffer) must be
at least 16 pixels wide (and the pattern will
normally be cut to a length that is a multiple of 16
pixels)

B - Writing blobs and patterns

Once you have created a blob and a pattern you
can"wrile"them out to the screen, i.e. have them
appear anywhere you want. Please be reminded
that a blob wilhout a pattern, and a pattern
without a blob are invisible.

1) WBLQB

This command writes a blob {Write BLOB) with
its corresponding pattern to specific screen
coordinates,

WBLOB f#channelr]x, y, blob, pattern

-,x obviously, x and y are the screen coordi-
nates where the blob is to be written. 0,0
rs the top left hand, and these coordinates
are in pixels, relative to the window origin
of the channel given as parameter

-, * blob and pattern are, of course the poin-

ters to the memory addresses where you
can find the blob and pattern to be written
out.

As usual, the channel parameter will default to ul
if it isn't specified. The blobs and patterns are
written into the channel window at the specrfied
coordinates. lf the coordinates are outside the
window there is no error but the blobs and
patterns will not be drawn Pattern should be a
multiple pf 16 pixels wide. Some {pretty old)
versions of the Pointer lnterface do NOT check
whether the parameters are really blobs and

patterns - if they aren't there is a good chance
that the machine will crash. Hence - make sure!

2) LBLOB

The LBLOB {Line of BLOBs} command allows you
to print one or several lines of blobs on the
sct000:

LBLOB f#channelr] xpos, Iposr blob, pattern

-, * xpos and ypos are the screen coordr-
nales You may combine them with the TO
operalor:
xposr)pos TO xlposrylpos (t0
x2pos,y2pos etc)
just like you would with the SxBasic LINE

command.

-, * blob and pattern, are the same pornters
to blobs and patterns as described above

3ISPRAY

This interesting little command is iike WBLOB, but
instead of writing an entire blob, it only writes out
a random number of pixels of it This is really only
necessary in some kind of painting program,
where, instead of drawing a continouous line, you
would want to write out a more diffuse line The
"pencil" thus just leave a spray of pixels {hence
the name) with a diffuse line

SPRAY x, Yr blob, pattern, pixels

-, * the first four parameters are like for
WBLOB

-, x Pixels: This parameter gives the (approxi'
mate) number of quantity of pixels that will
be drawn. Howevel even if you paint
several times over the same place with the
same pixel, you will not be sure that the
entire blob will be drawn out (after all, you
have WBLOB for thatl)

This concludes this little series on QPTR I hope
you have enloyed it more than I have....

34 8l- faday

