

Copyright (C) 1985 Tenchstar Limited.
Metacomco is a trading divison of Tenchstar Limited.

ALL rights reserved. No part of this work may be reproduced in.any
form or by any means or used to make a derivative work (such as a
translation, transformation, or adaption) without the permission in
writing of Tenchstar Limited, 26 Portland Square, Bristol. England.

Registered users of the Metacomco QL Pascal Development Kit may
make an unlimited number of copies of the Pascal runtime library
only for inclusion in applications programs written in Pascal.
There is no fee payable for this right.

As a further service to software developers, Metacomco is prepared
to make the source code of this runtime library available for a fee
to those who which to edit, modify or enhance it for inclusion in
their applications

programs. The source is written in BCPL and 68000 assembler. For
further details, contact Metacomco.

Although great care has gone into the preparation of this product,
neither Tenchstar Limited nor its distributors make any warranties
with respect to this product other than to guarantee the original
microdrives and EPROM against faulty workmanship for 90 days after
purchase.

QL, QDOS and SuperBasic are trademarks of Sinclair Research
Limited.

Version History:

1985: Metacomco

2023: QL Community Version

Using QL Pascal

Using QL Pascal

Use of the EPROM cartridge
The Pascal Compiler
Running the compiler
Compilation
Running a program
The INSTALL program

Chapter 1: The Screen Editor

1.1 Introduction
1.2 Immediate commands
1.3 Extended commands
1.4 Command list

Chapter 2: Introduction to QL PASCAL

2.1 Introduction

Chapter 3: Language Guide

3.1 Language overview
3.2 Language vocabulary and data

Chapter 4: Type definitions and variable declarations

4.1 Simple types
4.2 Structured types

Chapter 5: Statements

5.1 Control and action in PASCAL programs
5.2 ASSIGNMENT statement
5.3 Repetition
5.4 Branching statements

Chapter 6: Subprograms

6.1 Procedures
6.2 Functions
6.3 Formal parameter list
6.4 The FORWARD directive

Chapter 7: Structured types

7.1 Enumerated, Subrange and Set types
7.2 The ARRAY type
7.3.1 The RECORD type
7.3.2 WITH statement
7.4.1 Pointer types
7.4.2 NEW
7.4.3 DISPOSE
7.6 INPUT / OUTPUT facilities

Appendix A Pascal syntax quick reference guide

Appendix B: Compile-time error messages

Appendix C: Collected errors

Appendix D: Extensions to the ISO Standard

Appendix E: WRITE and WRITELN OUTPUT Formatting

Appendix F: Example Programs

Appendix G: Compliance Statement

INDEX

QL Pascal Development Kit Using QL Pascal

Using QL Pascal

Welcome to QL Pascal. In your development kit you should have the
following items:

1. Microdrive cartridge A: Pascal compiler

2. Microdrive cartridge B: Screen Editor and Pascal run-time
system

3. An EPROM containing part of the QL Pascal

4. The QL PASCAL Development Kit manual

We strongly recommend that you make backup copies of the two
microdrives cartridges and keep the master copies in a safe place.

Use of the EPROM cartridge

As has been mentioned above, part of the Pascal is provided on an
EPROM. The QL Pascal EPROM is encased in a plastic cartridge which
can be inserted into the machine whenever the Language is required.

To insert your EPROM, first POWER DOWN your QL. This is very
important! Then remove the cover from the QL socket marked "ROM"
which is Located on the left at the rear of the computer. The EPROM
cartridge can now be pushed carefully into this socket. Once the
cartridge is in, the machine can be powered up.

Having selected the required screen (either TV or monitor) the EPROM
can now be verified. It is not essential to do this; if the title
comes up, it should be working. However, as part of it may be missing
or damaged, it is a good idea to check. To verify your EPROM, type:

ROM

The EPROM will then run a check on itself. If it is working, the
message "QL PASCAL VERSION", followed by the version number, will
appear on the top left hand corner of the screen. If the EPROM is
faulty then the

i

QL Pascal Development Kit Using QL Pascal

message "BAD ROM" will appear and you should contact Metacomco for
further assistance. After the EPROM has been verified, the Language
can be used.

Each EPROM is internally numbered according to its version. The same
numbering system is used for the compiler. When a program is
compiled, the compiler checks to see if the EPROM version number
tallies with its own. It also checks the installation. If either the
number fails to tally, or the installation is in any way incorrect,
the compiler will return an appropriate error.

The Pascal Compiler

Preparing to run the Pascal compiler The microdrive cartridge
containing the compiler (A) should be inserted into the left-hand
drive and the cartridge containing your Pascal program should be
inserted into the right-hand drive. Note that it is possible to
change the default drive on which the compiler resides (see the
section on the Install program).

Running the compiler

The QL Pascal compiler is invoked by specifying:

exec_w <drive no>_pascal
or

exec <drive no>_pascal

Following the initial loading of the compiler, CTRL-C must be entered
to position the cursor at the first compiler prompt (unless exec_w
has been used). This asks for the name of the input source file,
which must be specified in accordance with QDOS file name syntax.

ii

QL Pascal Development Kit Using QL Pascal

The compiler on receiving this source file name checks for _PAS as
the final extension and if it is absent adds it. It then attempts to
open <filename>_PAS. If it fails and it added _PAS it tries to open
<filename > as the source file.

The following five prompts are then generated in turn:

i) Listing file?
ii) Code file?
iii) Omit range-checking [Y/N]?
iv) Extensions to ISO standard
v) Workspace size?

The enter key may be depressed in response to these prompts, if the
default conditions are required.

i) Listing file?

If an output compilation listing file is required then the
file name for the listing must be specified. The listing file
defaults to <filename>_LST if the supplied filename does not
end in _LST. The default is no listing file.

ii) Code file?

The output code-file name, if required, is specified here. The
default is no code file. Thus the compiler can be used for
syntax checking only. The code file defaults to <filename>_REL
if the supplied filename does not end in _REL.

iii) Omit range-checking [Y/N]?

Programs generally execute more efficiently if range-checking
is turned off but are prone to unpredictable results if data
value mismatches are encountered. The default response is 'N'

iii

QL Pascal Development Kit Using QL Pascal

iv) Extensions to ISO standard [Y/N]?

Type 'Y' if the use of the ISO standard extensions is
required. The default response is "N'.

v) Workspace size?

Enter an integer to specify the workspace size in bytes, or an
integer followed by 'K', to specify the workspace required in
kilobytes. The default size for a QL with 128K of memory has
been set to 20K. For Large programs we recommend that you use
memory expansion on your QL.

Compilation

During compilation on an unexpanded (128K) QL you will notice the
compiler using the screen-area of memory as workspace. This will not
usually happen on a QL with memory expansion.

Any errors apart from warnings detected by the compiler cause
repression of further code generation. All error numbers and the
erroneous portion of source text are displayed in a thin window on
the console, together with the prompt

'Press ENTER (continue) or A (abort)'.

Also, if a listing file is specified at compile time, the error
number is output at the appropriate point in the compilation Listing.
A table of error messages corresponding to error numbers can be found
in Appendix B.

At the end of compilation the following prompt appears;

'Any more files to compile [Y/N]?'

If more files are to be compiled then type 'Y' otherwise type 'N'.
The default is ''N'. CTRL-C must now be entered to reposition the
cursor at the main QL command line.

iv

QL Pascal Development Kit Using QL Pascal

The List file gives useful information about the compilation. It
supplies;

i) the name of the file compiled.

ii) a listing of the source code with each line, statement and
level of logical nesting numbered.

iii) any compilation errors found, positioned at the relevant place
in the source listing.

iv) details of the block structure of the program, procedures,
functions and associated storage.

v) details of the identifiers declared (in the main program,
procedures and functions) and associated storage.

Running a program

Linking in the Pascal run-time library

Before object code is ready for execution, the Pascal run-time
library must be linked in using the QL Pascal linker. To do this the
microdrive cartridge containing the program PASLINK (Cartridge B)
should be inserted into one of the drives.

To run PASLINK, type:

exec_w <drive no>_paslink
or

exec <drive no>_paslink

Once loaded, PASLINK will request the name of a binary file. This
should be the output from a previous run of the compiler. On
receiving the binary file name, the compiler checks for _REL as the
final extension and if it is absent, adds it. It then attempts to
open <filename>_REL. If it fails and it added _REL, it tries to open
<filename> as the binary file. Once satisfied on the first input name
it

v

QL Pascal Development Kit Using QL Pascal

will ask for a further binary file input. In the simple case of a
Single segment program you should now press ENTER. You will then be
asked for an output file name, which is where the linked program will
be placed. This output will contain your program and the complete
Pascal runtime system, and will be a code file which is directly
runnable using EXEC or EXEC_W.

If you want to make a code file then enter a suitable file name. You
will next be asked for the stack size to be used. The stack is used
for all main program variables and the default is 800 long-words.

If you are still developing a program, the next step after creating a
code file with PASLINK would be to run it, and so PASLINK allows a
short cut here. If you simply press ENTER in response to the request
for the output file, PASLINK will load your program and then execute
it immediately. Before it starts your program the window will be
cleared, and you can start testing. There is a restriction on this
use, which is that the stack space used will not be alterable and
that more space than is needed will be taken up because both PASLINK
and your program are in store simultaneously.

If you wish to include external procedures written in Metacomco BCPL
or Assembler, then you should enter the filename of the Pascal object
code file as the first input file, and then instead of immediately
pressing ENTER when asked for a further input file you should provide
the next file name and so on. A response of just ENTER terminates the
list.

Program execution

At run-time the QL Pascal run-time Library is loaded. If a run-time
error is detected program execution is terminated and an error
message is displayed on the console.

vi

QL Pascal Development Kit Using QL Pascal

Changing the default window

The editor allows the window to be altered as part of the
initialisation sequence. If this option is not required then the
default window is used. This is initially the same as the window used
during the start of the program, but if required the default window
may be altered permanently by patching the programs. This is useful
where a certain window size and position is always required and means
that the window does not have to be positioned correctly each time
the program is run. The default windows used by PASCAL and PASLINK
can also be patched.

Changing the default drive names

For those users who upgrade their QL with disc drives, there is the
possibility of changing default drive names to something other than
mdv1. This option will not be given when installing the editor ED
Since it can be EXECed from any device.

If the default device is changed for PASCAL then the compiler will
look on the new device for its overlays. If the default device is
changed for PASLINK then if your Pascal program creates any temporary
files, they will appear on the new device. The default device may be
changed to something other than mdv1 by patching the relevant
program.

vii

QL Pascal Development Kit Using QL Pascal

The INSTALL program

The program INSTALL is Supplied on the distribution microdrive
cartridge (B) to perform both of the above tasks. It is run by the
command

LRUN <drive no>_install

The program starts by asking whether the default window is to be set
up for TV or monitor mode. The minimum window size is greater in TV
mode because the characters used are larger. You should answer T if
you are setting the default for use with TV mode and M if you are
setting it for use with monitor mode. Note that the current mode in
use is of no consequence.

The standard window will appear on the screen and can be moved by
means of the cursor keys and altered in size by means of ALT cursor
keys. Once the window is in the right place and of the desired size,
press ENTER.

The program now asks for the name of the file which is to be
modified. If you wished to alter the editor then the file would
probably be something like 'mdv1_ed'. The next item requested is the
name of the program. When a new job such as the editor or Pascal is
running on the QL, it has a name associated with it. This can be
inspected by suitable utilities. The name is six characters long, and
whatever is typed here is used as the name and forced to the correct
length. The name is of little importance except for job
identification.

In the case of PASCAL and PASLINK the program will then go on to ask
for a default drive name. If you do not wish to change the default
drive name the reply should be:

MDV1

(Note - the reply must not be MDV1_). If you do wish to change the
default drive name the reply should be the device name, for example:

FLP1

In the case of PASCAL this will append 'FLP1_' to its overlays before
attempting to load them.

viii

QL Pascal Development Kit Using QL Pascal

The INSTALL program will then modify the file specified. INSTALL can
be run as many times as you like to alter the default window. It is
unlikely to be useful with programs other than those distributed by
Metacomco that provide user selection of an initial window such as
Metacomco's Assembler, LISP, BCPL and Pascal.

ix

QL Pascal Development Kit Screen Editor

Chapter 1: The Screen Editor

1.1 Introduction

The screen editor ED may be used to create a new file or to alter an
existing one. The text is displayed on the screen, and can be
scrolled vertically or horizontally as required. The size of the
program is about 20K bytes and it requires a minimum workspace of 8K
bytes.

The editor is invoked using EXEC or EXEC_W as follows:

EXEC_W mdv1_ed

The difference between invoking a program with EXEC or EXEC_W is as
follows. Using EXEC_W means that the editor is loaded and SuperBasic
waits until the editing is complete. Anything typed while the editor
is running is directed to the editor. When the editor finishes,
keyboard input is directed at SuperBasic once more.

Using EXEC is slightly more complicated but is more flexible. In this
case the editor is loaded into memory and is started, but SuperBasic
carries on running. Anything typed at the keyboard is directed to
SuperBasic unless the current window is changed. This is performed by
typing CTRL-C, which switches to another window. If just one copy of
ED is running then CTRL-C will switch to the editor window, and
characters typed at the keyboard will be directed to the editor. A
subsequent CTRL-C switches back to SuperBasic. When the editor is
terminated a CTRL-C will be needed to switch back to SuperBasic once
more. More than one version of the editor can be run concurrently
(subject to available memory) if EXEC is used. In this case CTRL-C
Switches between SuperBasic and the two versions of the editor in
turn.

Once the program is loaded it will ask for a filename which should
conform to the standard QDOS filename syntax. No check is made on the
name used, but if it 1s invalid a message will be issued when an
attempt is made to write the file out, and a different file name may
be specified then if required. ALL subsequent questions have defaults
which are obtained by just pressing ENTER.

-1-

QL Pascal Development Kit Screen Editor

The next question asks for the workspace required. ED works by
loading the file to be edited into memory and sufficient workspace is
needed to hold all the file plus a small overhead. The default is 12K
bytes which is sufficient for small files. The amount can be
specified as a number or in units of 1024 bytes if the number is
terminated by the character K. If you ask for more memory than is
available then the question is asked again. The minimum is 8K bytes.

You are next asked if you wish to alter the window used by ED. The
default window is normally the same as the window used in the
initialisation of ED although this may be altered if required. If you
type N or just press ENTER then the default window is used. If you
type Y then you are given a chance to alter the window. The current
window is displayed on the screen and the cursor keys can be used to
move the window around. The combination ALT and the cursor keys will
alter the size of the window although there 1s a minimum size which
may be used. Within this constraint you can specify a window anywhere
on the screen, so that you can edit a file and do something else such
as run a SuperBasic program concurrently. When you are satisfied with
the position of the window press ENTER.

Next, an attempt is made to open the file specified, and if this
succeeds then the file is read into storage and the first few lines
displayed on the screen. Otherwise a blank screen is provided, ready
for the addition of new data. The message "File too big" indicates
that more workspace should be specified.

when the editor is running the bottom line of the screen is used as a
message area and command line. Any error messages are displayed
there, and remain displayed until another editor command is given.

Editor commands fall into two categories - immediate commands and
extended commands. Immediate commands are those which are executed
immediately, and are specified by a single key or control key
combination. Extended commands are typed in onto the command line,
and are not executed until the command line is finished. A number of
extended commands may be typed on a single command line, and any
commands may be grouped together and groups repeated automatically.
Most immediate commands have a matching extended version.

-2-

QL Pascal Development Kit Screen Editor

Immediate commands use the function keys and cursor keys on the QL in
conjunction with the special keys SHIFT, CTRL and ALT. For example,
delete Line is requested by holding down the CTRL and ALT keys and
then pressing the left arrow key. This is described in this document
as CTRL-ALT-LEFT. Function keys are described as F1, F2 etc.

The editor attempts to keep the screen up to date, but if a further
command is entered while it is attempting to redraw the display, the
command is executed at once and the display will be updated later,
when there is time. The current line is always displayed first, and
is always up to date.

1.2 Immediate commands

Cursor control

The cursor is moved one position in either direction by the cursor
control keys LEFT, RIGHT, UP an DOWN. If the cursor is on the edge of
the screen the text is scrolled to make the rest of the text visible.
Vertical scroll is carried out a line at a time, while horizontal
scroll is carried out ten characters at a time. The cursor cannot be
moved off the top or bottom of the file, or off the left hand edge of
the text.

The ALT-RIGHT combination will take the cursor to the right hand edge
of the current Line, while ALT-LEFT moves it to the Left hand edge of
the line. The text will be scrolled horizontally if required. In a
Similar fashion SHIFT-UP places the cursor at the start of the first
line on the screen, and SHIFT-DOWN places it at the end of the last
Line on the screen.

The combinations SHIFT-RIGHT and SHIFT-LEFT take the cursor to the
start of the next word or to the space following the previous word
respectively. The text will be scrolled vertically or horizontally as
required. The TAB key can also be used. If the cursor position is
beyond the end of the current Line then TAB moves the cursor to the
next tab position, which is a multiple of the tab setting (initially
3). If the cursor is over some text then sufficient spaces are
inserted to align the cursor with the next tab position, with any
characters to the right of the cursor being shuffled to the right.

-3-

QL Pascal Development Kit Screen Editor

Inserting text

Any letter typed will be added to the text in the position indicated
by the cursor, unless the Line is too long (there is a maximum of 255
characters in a line). Any characters to the right of the text will
be shuffled up to make room. If the line exceeds the size of the
screen the end of the Line will disappear and will be redisplayed
when the text is scrolled horizontally. If the cursor has been placed
beyond the end of the line, for example by means of the TAB or cursor
control keys, then spaces are inserted between the end of the Line
and any inserted character. Although the QL keyboard generates a
different code for SHIFT-SPACE and SHIFT-ENTER these are mapped to
normal space and ENTER characters for convenience.

An ENTER key causes the current line to be split at the position
indicated by the cursor, and a new line generated. If the cursor is
at the end of a line the effect is simply to create a new, empty
blank Line after the current one. Alternatively CTRL-DOWN may be used
to generate a blank line after the current, with no split of the
current Line taking place. In either case the cursor is placed on the
new line at the position indicated by the left margin (initially
column one).

A right margin may be set up so that ENTERS are automatically
inserted before the preceding word when the Length of the line being
typed exceeds that margin. In detail, if a character is typed and the
cursor is at the end of the line and at the right margin position
then an automatic newline is generated. Unless the character typed
was a Space, the half completed word at the end of the line is moved
down to the newly generated line. Initially there is a right margin
set up at the right hand edge of the window used by ED. The right
margin may be disabled by means of the EX command (see later).

-4-

QL Pascal Development Kit Screen Editor

Deleting text

The CTRL-LEFT key combination deletes the character to the left of
the cursor and moves the cursor left one position. If the cursor is
at the start of a Line then the newline between the current Line and
the previous is deleted (unless you are on the very first Line). The
text will be scrolled if required. CTRL-RIGHT deletes the character
at the current cursor position without moving the cursor. As with all
deletes, characters remaining on the Line are shuffled down, and text
which was invisible beyond the right hand edge of the screen may now
become visible.

The combination SHIFT-CTRL-RIGHT may be used to delete a word or a
number of spaces. The action of this depends on the character at the
cursor. If this character is a space then all spaces up to the next
non-space character on the line are deleted. Otherwise characters are
deleted from the cursor, and text shuffled left, until a space is
found. The CTRL-ALT-RIGHT command deletes all characters from the
cursor to the end of the line. The CTRL-ALT-LEFT command deletes the
entire current Line.

Scrolling

Besides the vertical scroll of one Line obtained by moving the cursor
to the edge of the screen, the text may be scrolled 12 lines
vertically by means of the commands ALT-UP and ALT-DOWN. ALT-UP moves
to previous lines, moving the text window up; ALT-DOWN moves the text
window down moving to lines further on in the file. The F4 key
rewrites the entire screen, which is useful if the screen is altered
by another program besides the editor. Remember that you can switch
out of the editor window and into some other job by typing CTRL-C at
any point, assuming that there is another job with an outstanding
input request. SuperBasic will be available only if you entered the
editor using EXEC rather than EXEC_W. If there is enough room in
memory you can run two versions of ED at the same time if you wish.

-5-

QL Pascal Development Kit Screen Editor

Repeating commands

The editor remembers any extended command Line typed, and this set of
extended commands may be executed again at any time by simply
pressing F2. Thus a search command could be set up as the extended
command, and executed in the normal way. If the first occurrence
found was not the one required, typing F2 will cause the search to be
executed again. AS most immediate commands have an extended version,
complex sets of editing commands can be set up and executed many
times. Note that if the extended command line contains repetition
counts then the relevant commands in that group will be executed many
times each time the F2 key is pressed.

1.3 Extended commands

Extended command mode is entered by pressing the F3 key. Subsequent
input will appear on the command line at the bottom of the screen.
Mistakes may be corrected by means of CTRL-LEFT and CTRL-RIGHT in the
normal way, while LEFT and RIGHT move the cursor over the command
line. The command line is terminated by pressing ENTER. After the
extended command has been executed the editor reverts to immediate
mode. Note that many extended commands can be given on a single
command line, but the maximum length of the command line is 255
characters. An empty command line is allowed, so just typing ENTER
after typing F3 will return to immediate mode.

Extended commands consist of one or two letters, with upper and lower
case regarded as the same. Multiple commands on the same command line
are separated from each other by a semicolon. Commands are sometimes
followed by an argument, such as a number or a string. A string is a
sequence of letters introduced and terminated by a delimiter, which
is any character besides letters, numbers, space, semicolon or
brackets. Thus valid strings might be

/happy/ 123 feet! :Hello!: "1/2"

Most immediate commands have a corresponding extended version. See
the table of commands for full details (section 1.4).

-6-

QL Pascal Development Kit Screen Editor

Program control

The command X causes the editor to exit. The text held in storage is
written out to file, and the editor then terminates. The editor may
fail to write the file out either because the filename specified when
editing started was invalid, or because the microdrive becomes full.
In either case the editor remains running, and a new destination
should be specified by means of the SA command described below.
Alternatively the Q command terminates immediately without writing
the buffer; confirmation is requested in this case if any changes
have been made to the file. A further command allows a 'snapshot'
copy of the file to be made without coming out of ED. This is the SA
command. SA saves the text to a named file or, in the absence of a
named file, to the current file. For example:

*SA /mdv2_savedtext/

or

*SA

This command is particularly useful in areas subject to power failure
or surge. It should be noted that SA followed by Q is equivalent to
the X command. Any alterations made between the SA and the Q will
cause ED to request confirmation again; if no alterations have been
made the program will be quitted immediately with the file saved in
that state. SA is also useful because it allows the user to specify a
filename other than the current one. It is therefore possible to make
copies at different stages and place them in different files.

The SA command is also useful in conjunction with the R command.
Typing R followed by a filename causes the editor to be re-entered
editing the new file. The old file will be Lost when this happens, so
confirmation is requested (as with the Q command) if any changes to
the current file have been made. The normal action is therefore to
save the current file with SA, and then start editing a new file with
R. This saves having to load the editor into memory again, and means
that once the editor is loaded the microdrive containing it can be
replaced by another.

The U command "undoes" any alterations made to the current Line if
possible. When the cursor is moved from one line to another, the
editor takes a copy of the new Line before making any changes to it.
The U command causes the copy to be restored. However the old copy is
discarded and a new one made in a number of circumstances.

-7-

QL Pascal Development Kit Screen Editor

These are when the cursor is moved off the current line, or when
scrolling in a horizontal or vertical direction is performed, or when
any extended command which alters the current Line is used. Thus U
will not "undo" a delete Line or insert line command, because the
cursor has been moved off the current line.

The SH command shows the current state of the editor. Information
such as the value of tab stops, current margins, block marks and the
name of the file being edited is displayed. Tabs are initially set at
every three columns; this can be changed by the command ST, followed
by a number n, which sets tabs at every n columns. The left margin
and right margin can be set by SL and SR commands, again followed by
a number indicating the column position. The left margin should not
be set beyond the width of the screen. The EX command may be used to
extend margins; once this command is given no account will be taken
of the right margin on the current line. Once the cursor is moved off
the current line, margins are enabled once more.

Block control

A block of text can be identified by means of the BS (block start)
and BE (block end) commands. The cursor should be moved to the first
line required in a block, and the BS command given. The cursor can
then be moved to the last Line wanted in the block, by cursor control
commands or in any other way, such as searching. The BE command is
then used to mark the end of the block. Note, however, that if any
change is made to the text the block start and block end become
undefined once more. The start of the block must be on the same Line,
or a line previous to, the Line which marks the end of the block. A
block always contains all of the line(s) within it.

Once a block has been identified, a copy of it may be moved into
another part of the file by means of the IB (insert block) command.
The previously identified block is replicated immediately after the
current Line. Alternatively a block may be deleted by means of the DB
command, after which the block start and end values are undefined. It
is not possible to insert a block within itself.

-8-

QL Pascal Development Kit Screen Editor

Block marks may also be used to remember a place in a file. The SB
(show block) command resets the screen window on the file so that the
first Line in the block is at the top of the screen.

A block may also be written to a file by means of the WB command. The
command is followed by a string which represents a file name. The
file is created, possibly destroying the previous contents, and the
buffer written to it. A file may be inserted by the IF command. The
filename given as the argument string is read into storage
immediately following the current Line.

Movement

The command T moves the screen to the top of the file, so that the
first Line in the file is the first line on the screen. The B command
moves the screen to the bottom of the file, so that the last line in
the file is the bottom Line on the screen if possible.

The commands N and P move the cursor to the start of the next Line
and previous Line respectively. The commands CL and CR move the
cursor one place to the left or one place to the right, while CE
places the cursor at the end of the current Line, and CS places it at
the start.

It is common for programs such as compilers and assemblers to give
line numbers to indicate where an error has been detected. For this
reason the command M is provided, which is followed by a number
representing the line number which is to be located. The cursor will
be placed on the line number in question. Thus M1 is the same as the
T command. If the line number specified is too Large the cursor will
be placed at the end of the file.

-9-

QL Pascal Development Kit Screen Editor

Searching and Exchanging

Alternatively the screen window may be moved to a particular context.
The command F is followed by a string which represents the text to be
located. The search starts at one place beyond the current cursor
position and continues forwards through the file. If found, the
Cursor is placed at the start of the located string. To search
backwards through the text use the command BF (backwards find) in the
same way as F. BF will find the Last occurrence of the string before
the current cursor position. To find the earliest occurrence use T
followed by F; to find the last, use B followed by BF. The string
after F and BF can be omitted; in this case the string specified in
the last F, BF or E command is used. Thus

*F /wombat/

*BF

will search for ''wombat' in a forwards direction and then in a
reverse direction.

The E (exchange) command takes a string followed by further text and
a further delimiter character, and causes the first string to be
exchanged to the last. So for example

E /wombat/zebra/

would cause the letters 'wombat' to be changed to 'zebra’. The editor
will start searching for the first string at the current cursor
position, and continues through the file. After the exchange is done
the cursor is moved to after the exchanged text. An empty string is
allowed as the search string, specified by two delimiters with
nothing between them. In this case the second string is inserted at
the current cursor position. No account is taken of margin settings
while exchanging text.

A variant on the E command is the EQ command. This queries the user
whether the exchange should take place before it happens. If the
response is N then the cursor is moved past the search string. If the
response is Y or ENTER then the change takes place; any other
response (except F2) will cause the command to be abandoned. This
command is normally only useful in repeated groups; a response such
as Q can be used to exit from an infinite repetition.

-10-

QL Pascal Development Kit Screen Editor

All of these commands normally perform the search making a
distinction between upper and lower case. The command UC may be given
which causes all subsequent searches to be made with cases equated.
Once this command has been given then the search string "wombat" will
match "Wombat", "WOMBAT", "WoMbAt" and so on. The distinction can be
enabled again by the command LC.

Altering text

The E command cannot be used to insert a newline into the text, but
the I and A commands may be used instead. The I command is followed
by a string which is inserted as a complete line before the current
line. The A command is also followed by a string, which is inserted
after the current line. It is possible to add control characters into
a file in this way.

The S command splits the current line at the cursor position, and
acts just as though an ENTER had been typed in immediate mode. The J
command joins the next line onto the end of the current one.

The D command deletes the current Line in the same way as the CTRL-
ALT-LEFT command in immediate mode, while the DC command deletes the
character at the cursor in the same way as CTRL-RIGHT.

Repeating commands

Any command may be repeated by preceding it with a number. For
example:

4 E /slithy/brillig/

will change the next four occurrences of 'slithy' to 'brillig'. The
screen is verified after each command. The RP (repeat) command can be
used to repeat a command until an error is reported, such as reaching
the end of the file. For example:

RP E /slithy/brillig/

will change all occurrences of 'slithy' to 'brillig'.

-11-

QL Pascal Development Kit Screen Editor

Commands may be grouped together with brackets and these command
groups executed repeatedly. Command groups may contain further nested
command groups. For example,

RP (F /bandersnatch/; 3 (IB; N))

will insert three copies of the current block whenever the string
'bandersnatch' is located.

Note that some commands are possible, but silly. For example,

RP SR 60

will set the right margin to 60 ad infinitum. However, any sequence
of extended commands, and particularly repeated ones, can be
interrupted by typing any character while they are taking place.
Command sequences are also abandoned if an error occurs.

-12-

QL Pascal Development Kit Screen Editor

1.4 Command list

In the extended command list, /S/ indicates a string, /s/t/ indicates
two exchange strings and n indicates a number.

Immediate commands

F2 Repeat last extended command
F3 Enter extended mode
F4 Redraw screen
LEFT Move cursor left
SHIFT-LEFT Move cursor to previous word
ALT-LEFT Move cursor to start of Line
CTRL-LEFT Delete left one character
CTRL-ALT-LEFT Delete Line
RIGHT Move cursor right
SHIFT-RIGHT Move cursor to start of next word
ALT-RIGHT Move cursor to end of Line
CTRL-RIGHT Delete right one character
CTRL-ALT-RIGHT Delete to end of Line
SHIFT-CTRL-RIGHT Delete word to right
UP Move cursor up
SHIFT-UP Cursor to top of screen
ALT-UP Scroll up
DOWN Move cursor down
SHIFT- DOWN Cursor to bottom of screen
ALT-DOWN Scroll down
CTRL-DOWN Insert blank Line

-13-

QL Pascal Development Kit Screen Editor

Extended Commands

A/s/ Insert line after current
B Move to bottom of file
BE Block end at cursor
BF Backwards find
BS Block start at cursor
CE Move cursor to end of Line
CL Move cursor one position left
CR Move cursor one position right
CS Move cursor to start of line
D Delete current Line
DB Delete block
DC Delete character at cursor
E /s/t/ Exchange s into t
EQ /s/t/ Exchange but query first
EX Extend right margin
F /s/ Find string s
I/s/ Insert line before current
IB Insert copy of block
IF /s/ Insert file s
J Join current line with next
LC Distinguish between upper and lower case in searches
Mn Move to Line n
N Move cursor to start of next line
P Move cursor to start of previous Line
Q Quit without saving text
R/s/ Re-enter editor with files
RP Repeat until error
S Split line at cursor
SA /s/ Save text to file
SB Show block on screen
SH Show information
SLn Set Left margin
SRn Set right margin
ST n Set tab distance
T Move to top of file
U Undo changes on current line
UC Equate U/C and I/c in searches
WB /s/ Write block to file s
X Exit, writing text back

-14-

QL Pascal Development Kit Introduction

Chapter 2: Introduction to QL PASCAL

2.1 Introduction

Since the publication, some nine years ago, of the Pascal User Manual
and Report by Kathleen Jensen & Niklaus Wirth, Pascal has achieved
widespread application in both educational institutions and the
commercial world. Its block-structured nature together with the
Stability and efficiency of its implementation provide for a suitable
systematic medium required by teaching establishments; the resulting
program readability and maintainability satisfy the Long-term high-
level development requirement of the commercial software world. The
degree of interest shown by commerce indicates the extent to which
Wirth succeeded in his aim to produce a simple overall Language
concept. The User Manual and Report became the unofficial standard
Pascal definition which, in certain areas, was open to interpretation
by implementers.

Following snowballing interest in Pascal by commercial developers,
accompanied by growing concern over’ portability between’ the
increasing number of different implementations available, the British
Standards Institute sponsored the drafting of a Pascal standard. This
was eventually published in 1982 as the ISO standard specification
which in clarifying the 'grey' areas in Wirth's definition provides a
complete, precise and accepted definition of Pascal.

QL PASCAL is an implementation of standard Pascal prepared in
accordance with the International Standards Organization standard ISO
7185/BS 6192. Enhancements have been included in order to produce a
convenient environment for the development of structured, efficient
and maintainable software to which the use of the Pascal Language
lends itself.

The compiler is single-pass and produces full MC68000 native code.
Integers are 32 bits wide. Sets can comprise of up to a quarter of a
million elements. The 24-bit addressing capability of the MC68000 can
be utilised to, for example, manipulate large RAM resident arrays.
Software developed using QL PASCAL, enhancements apart, is easily
transportable, at the source code level, to other implementations of

-15-

QL Pascal Development Kit Introduction

Pascal conforming to the ISO standard but the substantial processing
environment afforded by the MC68000 microprocessor must be borne in
mind when contemplating such an exercise for a different target
processor and associated operating system.

This manual fully describes the QL PASCAL language and language
related topics independently of the implementation and operating
environment. It has been organized with speed and ease of reference
in mind and therefore is not intended to act as a Pascal tutorial
guide if you are new to computer programming; however it may be used
as such if you have experience of high-level language programming.

Two excellent textbooks on Pascal are:

Brown P J (1982) Pascal from Basic
Addison-Wesley, London, ISBN 0-201-13789-5

Cooper D (1983) Standard Pascal User Reference Manual
W W Norton & Co, London, ISBN 0-393-30121-4

-16-

OL Pascal Development Kit Language Guide

Chapter 3: Language Guide

3.1 Language overview

This section combines a broad description of the syntactic
components of the Language together with a description of its block-
structured nature to provide a logical overview for the purposes of
referencing the detailed language description that follows in later
sections.

Notational conventions

With reference to syntax descriptions, the following notational
conventions are used throughout this manual:

UPPER CASE Words in upper case are QL PASCAL 68000
reserved words or predefined identifiers.

lower case Variable information is in lower case.

n A numeric value. The default is decimal.

"" Precise literal information is enclosed by, but
does not include, double quotes.

{} Items inside curly brackets are optional and
can occur zero or more times. Items not
contained within curly or square brackets are
mandatory.

[] Items inside square brackets are optional but
cannot occur more than once. Items not
contained within square or curly brackets are
mandatory.

<> Items inside angle brackets represent variable
syntactic constructs detailed elsewhere in the
manual.

-17-

OL Pascal Development Kit Language Guide

() One item is required from the choice of items
delimited by round brackets.

| The vertical bar signifies a choice between the
items it separates.

... Horizontal dots signify continuation

.
.
. Vertical dots signify continuation

Tokens

The smallest individual units or tokens of QL Pascal 68000 consist
of the following three basic types:

i) Special symbols

These are:

+ . = > {

- , <> (}

* ; <) *

/ : <= { ..

= ' >=] @

-18-

OL Pascal Development Kit Language Guide

ii) Word symbols or reserved words

These are:

AND ARRAY BEGIN CASE

CONST DIV DO DOWNTO

ELSE END FILE FOR

FUNCTION GOTO IF IN

LABEL MOD NIL NOT

OF OR PACKED PROCEDURE

PROGRAM RECORD REPEAT SET

THEN TO TYPE UNTIL

VAR WHILE WITH

iii) Identifiers

These may be of any length and all of the characters used are
Significant. They must start with an alphabetic character and can
continue with a mixed collection of alphabetic characters or digits.
Blanks and special symbols cannot be included. Alphabetic characters
are the upper and Lower case letters of the English alphabet. Digits
are 0-9.

Reserved words and identifiers can be specified using upper or lower
case characters or a mixture of both. Upper case characters are not
distinct from lower case characters.

-19-

OL Pascal Development Kit Language Guide

Block structure

QL Pascal 68000 source code is a collection of identically
structured units known as blocks. Each block has the form:

<block heading>

{<declaration>}

{<definition>}

BEGIN

{<statement>}

END<"." | men>

Each block has a required heading, an optional declarations and
definitions section and, surrounded by the reserved words BEGIN and
END, zero or more statements. Statements are language specific
syntactic constructs used to control and perform action within a
program. Blocks are discrete program chunks that cannot overlap with
other blocks, but can fully reside within other blocks which, in
turn, can reside in other blocks and so on. This is known as block
nesting. In nested blocks the outermost block is the main block and
block nesting can be used to create many block levels (see Fig. 1).

-20-

OL Pascal Development Kit Language Guide

Figure 1

M where

p level 0 = M

A level 1 = P,Q

B
level 2 = A,R,S

level 3 = B

Q

R

S

Block Structure

Thus in a program the outermost block level is that of the main
control or program block.

A PASCAL Program

A complete program contains one or more blocks; it must contain at
least the program block to which control is first passed at run-
time. The program block has the following form:

-21-

OL Pascal Development Kit Language Guide

PROGRAM <program name> {<program parameters>}";"

{<declaration>}

{<definition>}

BEGIN

{<statement>}

END", "

A program starts with the reserved word PROGRAM followed by its
identifying program name, which has no further use within the
program, and any optional program parameters (these are described in
Sections 7.5 and 7.6). The program block definition ends with a full
stop. A program with zero number of statements will, of course, do
nothing.

Other blocks are defined as procedures and functions to which
program control can be passed. Procedures and functions can contain
nested procedures and functions. Procedures and functions can be
thought of as subprograms which are associated with identifiers
declared in the declarations and definitions section of a block. A
function is distinct from a procedure in that the identifier used to
declare the function is also associated with the result of the
function Subprogram.

Apart from reserved words and certain predefined identifiers each
identifier, which can relate to a procedure, a function, a label or
an item of data, must be declared before it is referenced from
within a program. The initial definition or declaration of an
identifier constitutes its defining point. An identifier may only be
referenced from within what is known as the scope of the identifier.

Scope

The scope of an identifier is the set of all blocks where a valid
reference to an identifier can be made. The normal scope or region
of an identifier is anywhere inside its defining block starting from
its defining point. If an identifier name is also used to define an
identifier within a nested procedure then the outer block identifier
becomes inaccessible from the inner block. Thus an identifier's
scope can be smaller, but never larger, than its region. An
identifier defined in the program block is said to be global, as its
region is the entire program. An identifier defined in a nested
block is said to be local to its defining block.

-22-

OL Pascal Development Kit Language Guide

Declarations and Definitions

In every block, the declarations and definitions section consists
of:

{<label declaration>}

{<constant definition>}

{<type definition>}

{<variable declaration>}

{<procedure or function declaration>}

These subsections must be specified in the above relative order.

Label declarations

QL Pascal 68000 statements can be Labelled as target destinations
for program control transfer by GOTO statements. Labels are
predeclared syntactically:

LABEL nl{,n2...,nn}";"

where n1...nn are distinct integers in the range 0 to 9999. Labels
may only prefix a single statement in the block that immediately
contains its declaration and not in any block within that block.
(see GOTO statement in Section 5.4.3).

Constant definitions

If the value of data associated with an identifier is to remain
fixed for the duration of program execution, the identifier can be
defined as a constant as opposed to being declared as a variable.
Constant are defined syntactically:

CONST <constant definition>";"
{<constant definition>";"}

Constants are further discussed in the Section 3.2.

-23-

OL Pascal Development Kit Language Guide

Type definitions

The form of data used in QL Pascal 68000 programs can be specified
as type definitions:

TYPE <type definition>";"{<type definition>";"}

Through type definitions, QL Pascal 68000 provides easy manipulation
of complex and flexible data structures. Type definition is
discussed in Section 4.

Variable declarations

The allocation of data for use in QL Pascal 68000 programs is
specified as variable declarations:

VAR <variable declaration>";"
{<variable declaration>";"}

Variable declaration is discussed with type definition in Section 4.
Procedure and Function declarations Procedures and functions are
declared syntactically:

<procedure or function heading>

{<declaration>}

{<definition>}

BEGIN

{<statement>}

END"; "

Procedures and functions are fully described in Section 6.

Labels are not treated as identifiers and are not fully subject to
normal scope rules. Also, attention is drawn to the FOR statement
(see Section 5.3.1) regarding referencing identifiers under normal
scope rules.

-24-

OL Pascal Development Kit Language Guide

Statements

The desired action on the declared data is effected by the correct
syntactic and logical use of statements, which describe how the
related data is to be manipulated. Statements are described in
Section 5.

The following is a simple program example designed to encapsulate
this introduction to QL Pascal 68000:

PROGRAM Introduction(Input, Output);

CONST Pi = 3.1416;

TYPE Length = REAL;

VAR Radius, Diameter : Length;

 FUNCTION AreaOfCircle : REAL;

 BEGIN

 AreaOfCircle := Pi * Radius * Radius

 END;

BEGIN

 WRITELN('Enter circle diameter '');

 READLN(Diameter);

 RADIUS := Diameter / 2.0;

 WRITELN('The area of your circle is ', AreaOfCircle)

END.

-25-

OL Pascal Development Kit Language Guide

3.2 Language vocabulary and data

The basic QL Pascal 68000 vocabulary consists of the special symbols
and reserved words itemised in Section 3.1 and certain predefined or
standard identifiers. The vocabulary is extended by programmer
defined identifiers. Reserved words and standard identifier names
cannot be used to define identifiers. All these tokens are separated
from each other by using any combination of the following
separators:

i) any number of blank characters

ii) any number of 'end of line’ characters

iii) any number of comments

Comments

Comments can be inserted into QL Pascal 68000 programs by enclosing
any desired sequence of symbols, excluding the symbol "}", by a pair
of curly brackets:

"{"<any symbol sequence not containing "}">"}"

If necessary, "(*" can be used in place of "{" and "*)" can be used
in place of "}". Comments are generally applied to clarify the
intended action of a program.

e.g.

{this is a comment}

(*this is also a comment")

-26-

OL Pascal Development Kit Language Guide

Standard identifiers

There are a number of standard identifiers which are predefined for
immediate use in QL Pascal 68000 programs at all block levels. They
are described at relevant points throughout this manual but the
following is a list of their names:

ABS ARCTAN BOOLEAN CHAR CHR

COS DISPOSE EOF EOLN EXP

FALSE GET INPUT INTEGER LN

MAXINT NEW ODD ORD OUTPUT

PACK PAGE PRED PUT READ

READLN REAL RESET REWRITE ROUND

SIN SQR SORT SUCC TEXT

TRUE TRUNC UNPACK WRITE WRITELN

Data

Data is the name given to all that is operated on by a computer.
Ultimately all data are represented in the machine as sequences of
binary digits.

For example, QL Pascal 68000 source code is a collection of data for
input to the QL Pascal 68000 compiler.

This section continues with a description of fundamental data
literals used and understood by QL Pascal 68000 programs.

Numbers

Decimal notation is used for numbers. A number can be positive or
negative and cannot contain embedded blanks or commas. Numbers can
be specified as either integers or real numbers which are each
processed differently at run-time.

-27-

OL Pascal Development Kit Language Guide

Integers

Whole numbers in the 32-bit range

-2147483648 to +2147483647

can be treated as integers. Formally integers are represented by

<signed-integer> = ("+"|"-"]<unsigned-integer>

<unsigned-integer> = <digit> {<digit>}

<digit> = 0|1|2|3|4|5|6|7|8|9

The sign can be omitted for positive integers.

When performing computations in a- program using integers,
unpredictable results can occur if possible intermediate values are
not in the range specified for integers. The following are all
examples of valid integers:

0 -1 +5 007 6789300

Real Numbers

These take the form

["+"|"-"]<unsigned-real>

where

<unsigned-real> = <unsigned-integer>
"."<fractional-part>

["E"<scale-factor>]
or

<unsigned-real> = <unsigned-integer>"E"<scale-factor>

<fractional-part> = <digit-sequence>

<scale-factor> = <signed-integer>

-28-

OL Pascal Development Kit Language Guide

The sign may be omitted for positive real numbers. The construct "E"
<scale-factor > is used to represent the preceding number 'times ten
to the power of' <scale-factor>, <scale-factor> being an optionally
Signed whole number of one or two digits. When specifying a real
number, this construct must be included if the number is specified
without the use of a decimal point. It is optional when using a
decimal point. A decimal point must have at least one digit either
side of itself.

The following are all examples of valid real numbers:

4E5 6E-7 -8.0 12.34E+10

whereas the following are all examples of invalid numbers:

3,456.7 .8 E9 1.E2 1.0E100

This numeric representation allows numbers to be represented in many
ways. Thus, for example:

The integer 123456 can be specified as any of the following real
numbers:

123456.0 123456e0 123.456E+3 +1.23456E5

Strings

Sequences of characters enclosed by single quote marks are referred
to as strings. To include a quote mark, two quote marks are
specified in the string. The following are all examples of Literal
strings:

'a' 'l' ':' 'begin' 'can''t' ' string '

Constant definition

Named constant values and literals are defined as constant
definitions:

CONST <identifier> "=" <constant>;
{<identifier> "=" <constant>; }

<constant> can be any of the forms just described. In a constant
definition part of a block, the identifiers must be distinct, if
necessary, be used in place of <constant>.

-29-

OL Pascal Development Kit Language Guide

For example:

CONST
topnum 50;

lownum = -topnum;

The following is an example of a valid constant definition part of
an QL Pascal 68000 program which also incorporates the use of
comments.

CONST
message = 'welcome'; {this is a string}

DIMENSION = 100; {this is an integer}

Factor = 5.4E-2; {this is a real number}

BlankString = ' '; {this is a string}

Defined constants are identifiers that conform to normal scope
rules. They can also be referenced in type definitions for the
purposes of specifying subranges or array bounds (see Sections 7.1
and 7.2).

MAXINT

QL Pascal 68000 provides one predefined constant as the identifier
MAXINT. It represents the largest positive integer of the 32-bit
range (see integers).

MAXINT - represents the positive integer 2147483647

-MAXINT - represents the negative integer -2147483647

-30-

QL Pascal Development Kit Type definitions & variable declarations

Chapter 4: Type definitions and variable declarations

All static data used in a program are specified as variable
declarations. The form and range of data are described as type
definitions.

All data must be declared before use by program statements in the
variable declaration parts of program blocks. A data type definition
can reside alongside the data declaration or reside in a type
definition part before data declaration. Using type definitions is to
be recommended, for other than predefined data types, in order to
minimize problems that may be encountered due to data type
mismatches. It also aids in the production of a more understandable
source code program.

The Type definition part of a block is:

TYPE <identifier> "=" <type>";"
 {<identifier> "=" <type>";"}

and the Variable declaration part of a block is:

VAR <identifier>({","<identifier>}":"<type>";"
 {<identifier>{", "<identifier>}":"<type>";"}

where <type> in both parts must be equal to either an QL Pascal 68000
provided type or <identifier > of a previous type definition whose
scope contains the type definition or variable declaration. The block
actually containing the type definition or variable declaration and
all blocks nested within, constitute the region of <identifier>.

All variables whose identifiers are declared in the Variable
Declaration part of a block, except those listed as program
parameters, shall be totally undefined when execution of the
statement part of their block commences. See Appendix C.

Data types fall into two categories - Simple types and Structured
types.

-31-

QL Pascal Development Kit Type definitions & variable declarations

4.1 Simple types

A simple type is a collection of elementary,indivisible data items.
There are four simple types provided by QL Pascal 68000 for immediate
use in variable declarations:

i) Boolean
ii) integer
iii) char
iv) real

These data types can be separated into two categories - ordinal and
real.

Ordinal Types

An ordinal type is characterized by being enumerable; ordinal type
values can be numbered, and compared for equality and relative
position. Thus a subrange of a full ordinal type range can be
defined; this definition is known as a subrange type. Char and
Boolean are ordinal types and type integer is, of course, an ordinal
type in the purest sense. Type Boolean belongs to the final class of
ordinal type known as an enumerated type. An enumerated type is a
collection of programmer specified identifiers; for type Boolean the
identifiers are TRUE and FALSE.

Type real

Type real refers to real numbers as discussed in section 3.2. The
range of real numbers is bound by the implementation and their
machine representation is specifically designed for storage
efficiency by virtue of treating real numbers as having two distinct
parts - the digits of the number itself and the exponent (the part
beginning with "E").

The provided simple types can be renamed in type definitions if
required.

-32-

QL Pascal Development Kit Type definitions & variable declarations

4.1.1 Type BOOLEAN

<type> = BOOLEAN

A Boolean type has two values denoted by the predefined identifiers
FALSE and TRUE. Comparison between Boolean identifiers accords with
the ordinal values of FALSE and TRUE which are © and 1 respectively.

Logical operators

The following logical or Boolean operators can only be applied to
Boolean operands and yield Boolean values:

AND - logical conjunction

OR - logical disjunction

NOT - logical negation

Relational operators

Each of the relational operators when applied to the various
permitted operand types (see sub-section on expressions in section 5)
yields a Boolean value:

= - equality

<> - inequality

< - less than

> - greater than

<= - less than or equal

>= - greater than or equal

IN - contained in

-33-

QL Pascal Development Kit Type definitions & variable declarations

Predefined logical functions

The following predefined functions yield Boolean values:

ODD(x) TRUE if integer x is odd otherwise FALSE

EOLN(f) These functions are concerned with file handling
EOF (f) and are dealt with in sections 7.5 and 7.6

4.1.2 Type INTEGER

<type> = INTEGER

The following arithmetic operators yield an integer value when
applied between integer operands:

* multiply

DIV divide and truncate (the value is not rounded)
division by zero constitutes an error

MOD the result of 1 MOD j is i-(n*j) for integer n
such that:

0 <= (i MOD j) < j

A zero or negative right hand operand constitutes an error

+ add

- subtract

Add and subtract can also be applied to single operands.

The relational operators =, <>, <, >, <=, >= yield a Boolean value
when applied between integer operands.

-34-

QL Pascal Development Kit Type definitions & variable declarations

The following predefined functions yield integer values:

ABS(x) gives the absolute value of integer x
SQR(x) gives the squared value of integer x
TRUNC(x) gives the integer value to the left of

the decimal point for real value x

ROUND(x) gives the rounded integer value of real
value x thus

if x >= © the result is TRUNC(x + 0.5)
if x < 0 the result is TRUNC(x - 0.5)

and the ordinal functions, when applied to an integer:

SUCC(x) yields the next integer (x + 1)
PRED(x) yields the preceding integer (x - 1)
ORD(x) yields the ordinal integer associated

with the value of x, where x is an ordinal type variable.

(the integer range or subrange must be borne in mind when applying
SUCC, PRED, SQR, TRUNC and ROUND to avoid run-time errors)

The description of the ordinal function CHR is included in the sub-
section on Type CHAR (See section 4.1.4).

-35-

QL Pascal Development Kit Type definitions & variable declarations

4.1.3 Type REAL

<type> = REAL

The following arithmetic operators yield a real value provided at
least one operand is of type real:

* multiply

+ add

- subtract

/ divide (here both operands may be of
type integer but the result is always
of type real)

The following predefined functions yield a value of type real:

ABS(x) - absolute value for real x

SQR(x) - squared value of real x

It is an error if the result of SQR does not exist (See Appendix C).
The remaining predefined functions always yield a value of type real;
arguments can be of type real or integer:

SIN(x) trigonometric functions,
arguments in radians

COS(x)

ARCTAN(x)

LN(x) - natural logarithm
EXP(x) - exponential function
SQRT(x) - Square root

Ordinal functions cannot be applied to real operands, as type real is
not an ordinal type. Variables of type real cannot be used to index
arrays (see section 7.2) or as control variables in FOR statements
(see section 5.3.1).

-36-

QL Pascal Development Kit Type definitions & variable declarations

4.1.4 Type CHAR

<type> = CHAR

A value of type char is an element of a finite and ordered character
set, in this case the ASCII character set.

The predefined functions ORD and CHR (also known as transfer
functions) relate to values of type char as follows:

ORD(c) will yield the ordinal number (which is of
type integer) of char value c. The ordinal
number corresponds to the numeric value of
character c as defined by the ASCII character
set.

ORD can be applied to all ordinal types. When
applied, ORD will yield the ordinal number
which corresponds to the position of the
ordinal value within the full range of the
ordinal type.

CHR(i) will yield a value of type char for an
integer i. This will be the character that
corresponds to numeric value i in the ASCII
character set, if there is one. It is an
error if there is no corresponding character.

It follows that for a value c of type char and a value i of type
integer:

CHR(ORD(c)) = c and

ORD(CHR(i)) = i

Relational comparisons between values of type char correspond to the
relationships between the ordinal numbers of the values. Thus:

If ORD(c1) < ORD(c2) where c1 and c2 are values of type char
then c1 < c2.

This applies to all of the relational operators.

-37-

QL Pascal Development Kit Type definitions & variable declarations

The functions PRED and SUCC can be applied to values of type char,
yielding results in accordance with the ASCII character set collating
sequence:

PRED(C) = CHR(ORD(c) - 1)

SUCC(c) = CHR(ORD(c) + 1)

for a value c of type char.

NOTE The small range of the character set must be borne in mind when
applying these functions to values of type char.

The following is a program example to illustrate full type
definitions and variable declarations.

PROGRAM TypeAndVar (output);

TYPE Degrees = REAL,

NumberofPeopleinAttendanceattheMeeting = INTEGER;

IsItMorning = BOOLEAN;

ALetteroftheALphabet = CHAR;

-38-

QL Pascal Development Kit Type definitions & variable declarations

VAR Temperature, Hotness, Coolness : Degrees;

 IsiItAfternoon : BOOLEAN;

 AM : IsIitMorning;

 C : ALetteroftheALphabet;

 Letters : CHAR;

 wholeNumbers : INTEGER;

 SundayGathering :
 NumberofPeopleinAttendanceattheMeeting;

 Profit, Loss,Costs,Margin : REAL;

BEGIN
 .

 .

 .

END.

-39-

QL Pascal Development Kit Type definitions & variable declarations

4.2 Structured types

Sophisticated data types can be defined in QL Pascal 68000 but must
ultimately be built as a collection of simple types. The permitted
structured types are as follows:

i) sets described in section 7.1
ii) arrays described in section 7.2
iii) records described in section 7.3
iv) pointers described in section 7.4
v) files described in section 7.5

NOTE A pointer type can be regarded as a non-ordinal simple type.

-40-

QL Pascal Development Kit Statements

Chapter 5: Statements

5.1 Control and action in PASCAL programs

Statements provide control and action within a program. Statements
fall into two categories:

i) simple and compound statements
ii) structured statements.

The empty statement, procedure invocations and assignment statements
(which encompass function invocations) constitute simple statements.
Compound statements are essentially sequences of simple and
structured statements. Structured statements relate more to program
control consisting of conditional and repetitive statements.

Compound statement

Syntactically this is represented by:

BEGIN

{<statement>}

END[";"|"."]

A compound statement comprises a collection of component statements
(simple or structured) surrounded by the reserved words BEGIN and
END. It is executed as a sequence of executions determined by the
nature of the component statements as they are written. The statement
body of a program block has the form of a compound statement which
ends with "." for the main block or ends with °.* for a subprogram
block.

-41-

QL Pascal Development Kit Statements

e.g.

PROGRAM CompoundStatement (output);
VAR result : INTEGER;
BEGIN
 result:= 9 + 7;
 WRITELN(result);
 result:= SQR(result);
 WRITELN(result)
END.

produces output

16

256

Empty statement

The previous example also illustrates that a semicolon separator is
optional before the final END of a compound statement. If a semicolon
is used then an empty statement is said to exist between the
semicolon and the END. The empty statement is a simple statement
which is harmless and does nothing. It is possible to insert
semicolons mistakenly which may result in compilation or execution
errors that can be difficult to locate.

Structured statements

Sequence control within a program can be effected in two different
ways:

i) by using statements that control repetition of some specified
action

or

ii) by using branching statements that can select control or
transfer control

-42-

QL Pascal Development Kit Statements

5.2 ASSIGNMENT statement

This is the most fundamental action statement in QL Pascal 68000.

Its form is:

<variable> ":=" <expression>

":=" is known as the assignment operator, distinct from the
relational operator "=". Assignment specifies that a newly computed
value be assigned to <variable>, which is an identifier (or a
function designator - see section 6) declared in a variable
declaration part such that the assignment statement is within the
scope of the identifier.

e.g.

x := 7; {an example of the simplest form of assignment }

Result := 9.6 * 10.8 * 6.1 - Offset;

The new value is obtained by evaluating <expression>.

Expressions

An expression is a rule for calculating a value and is made up from
identifier or Literal operands, operators and identifiers to invoke
functions (function designators - see section 6). It is an error for
an undefined variable-access to appear in an expression. See Appendix
C. The evaluation is subject to operator precedence rules but beyond
these, proceeds from left to right. (However, see Appendix C.)

-43-

QL Pascal Development Kit Statements

5.2.1 Operators

Operator Precedence

There are four levels of precedence:

Highest precedence is given to the logical operator NOT. Precedence
is next given to the logical operator AND and the multiplying
operators * / DIV MOD. The third level of precedence is given to the
logical operator OR and the adding operators + -

Lowest precedence is given to the relational operators:

 =, <>, <, >, <=, >=, IN

Expressions enclosed within parentheses are evaluated regardless of
preceding or succeeding expressions.

Examples:

5 + 4 * 6 - 7 = 5 + (4 * 6) - 7 = 22

3 + 8 * 9 DIV 6 = 3 + ((8 * 9) DIV 6) = 15

12 / 2 / 4 = (12 / 2) / 4 = 1.5

4 / 2 * 5 = (4 / 2) * 5 = 10.0

Operation rules

Operations between variables can only take place if the variables
have compatible types.

-44-

QL Pascal Development Kit Statements

Compatibility rules

For an operation between a variable of type T1 and a variable of type
T2 compatibility is summarised as follows:

T1 and T2 are the same type.

Ordinal type Ti is a subrange of T2 (or vice versa)or both
are subranges of the same host ordinal type.

Set types T1 and T2 are compatible if the ordinal base types
are compatible and if both or neither are packed (see 6.1).

T1 and T2 are string types with the same number of components
(see 6.2).

Assignment rules

Assignment is possible to variables of any type, with the exception
of type file (see section 7.5). Assignment is only possible if the
variable type and the expression yielded value are assignment
compatible.

Assignment compatibility rules

For an expression value of type T1 and variable of type T2 assignment
compatibility is summarised as follows:

T1 and T2 are the same type.

T2 is of type REAL and T1 is of type INTEGER or subrange of
INTEGER but not vice versa.

T1 and T2 are compatible ordinal or enumerated types and the
expression value is valid for type T2.

Ti and T2 are compatible SET types and every set member given
by the expression is contained by the base type of T2 (see
section 7.1).

Ti and T2 are compatible string types (See array types in
section 7.2).

-45-

QL Pascal Development Kit Statements

Examples of valid assignment statements:

count := count + 1;

area := radius * radius * Pi;

Perimeter := 2 * (Length + width);

RSquared := SQR(r);

Z1 := SIN(x1) + COS(y1);

Margin := SellingPrice - Costs;

Correct := Answer = RightAnswer;

-46-

QL Pascal Development Kit Statements

Operator summary

Table 1 : Monadic Arithmetic Operators

operator operation
type of
operand

type of
result

+ identity
integer
real

integer
real

- sign inversion
integer
real

integer
real

Table 2 : Dyadic Arithmetic Operators

operator operation
type of
operand

type of
result

+ addition
integer or

real integer
if both

operands are
integer
otherwise

real

- sign inversion
integer or

real

* multiplication
integer or

real

/ division
integer or

real
real

div truncated division integer integer

mod modulo integer integer

-47-

QL Pascal Development Kit Statements

Table 3 : Boolean Operators

operator operation type of operand type of result

not identity boolean boolean

or sign inversion boolean boolean

and conjunction boolean boolean

Table 4 : Set Operators

operator operation type of operand type of result

+ set union

any canonical
set-of-T type

same as the
operands

- set difference

* set intersection

-48-

QL Pascal Development Kit Statements

Table 5 : Relational Operators

operator type of operand type of result

= <>
 any simple, pointer, or string
 or a Canonical set-of-T type

boolean

< >
 any simple or string type
 or a Canonical set-of-T type

boolean

<= >= any simple or string type boolean

in
 left operand: any ordinal type T
 in in right operand: a canonical
 set-of-T type

boolean

5.3 Repetition

There are three forms of repetition statements:

1. FOR statement

2. WHILE statement

3. REPEAT statement

-49-

QL Pascal Development Kit Statements

5.3.1 FOR statement

Syntactically this is:

FOR <control-variable> ";="
<expression1> (TO | DOWNTO) <expression2> DO
<statement>

Upon execution of the FOR statement the values of <expression1> and
<expression2> are evaluated (<expression1> being evaluated first) and
stored to determine the number of repetitions of <statement>.
<statement> can be any simple, compound or structured statement and
is executed for each increment of <control-variable> when using the
TO option and for each decrement when using the DOWNTO option. The
value of <control-variable> is left undefined at termination of the
FOR statement even if <statement1> is not executed. The first part of
a FOR statement can be thought of as being composed of two assignment
statements and as_ such, <control-variable>, <expression1> and
<expression2> are subject to assignment compatibility rules as well
as the following:

i) <control-variable> must be declared as an identifier of any
ordinal type. Therefore it cannot be declared using type real
and it cannot be a component of a structured variable or a
variable accessed through a pointer (see section 7.4).

ii) <control-variable> must be declared as an identifier in the
block that immediately contains the FOR statement and not in
any outer blocks.

iii) <control-variable> must not be ''threatened' within the FOR
statement action or in any blocks local to the block
immediately containing the FOR statement. 'Threatened' action
constitutes any of the following:

a) An ordinary assignment to <control-variable>.

b) Passing <control-variable> as a variable-parameter to a
procedure or function (see section 6).

c) READ or READLN (See sections 7.5 and 7.6) calls with
<control-variable > as a parameter.

-50-

QL Pascal Development Kit Statements

d) <control-variable> acting as <control-variable> for
another FOR statement.

iv) If <expression1> is greater than <expression2> when using the
TO option, or <expressioni> is less than <expression2> when
using the DOWNTO option, <statement> will not be executed. If
<expressionl1> is equal to <expression2>, for either the TO or
DOWNTO options, <statement > will be executed once.

e.g.

FOR i:= 11 TO 10 DO <statement>

FOR i:= 10 DOWNTO 11 DO <statement>

<statement> in the above examples will not be executed

FOR i:= 10 TO 10 DO <statement>

FOR i:= 10 DOWNTO 10 DO <statement>

here <statement > will be executed exactly once, in each case

e.g.

PROGRAM for loop(output);
VAR
 i,j: INTEGER;
BEGIN
 j:=4;
 FOR i:=1 to j+2 DO
 BEGIN
 WRITE(i);
 WRITE(':')
 END;
 WRITELN
END.

will produce:

1: 2: 3: 4: 5: 6:

-51-

QL Pascal Development Kit Statements

e.g.

 PROGRAM literal(output);
 VAR
 c:char;
 BEGIN
 FOR c:='k' DOWNTO 'a' DO
 WRITE(C);
 WRITELN
 END.

will produce:

kjihgfedcba

-52-

QL Pascal Development Kit Statements

5.3.2 WHILE statement

Syntactically this is:

WHILE <expression> DO <statement>

<expression> must yield a value of type Boolean and is evaluated
before each possible execution of <statement>. <statement> can be any
Simple, compound or structured statement and is executed each time
<expression> yields Boolean value TRUE. Execution of the WHILE
statement terminates upon <expression> yielding Boolean value FALSE.
<statement > can, therefore, be executed zero or more times.

The following are examples of valid WHILE statements:

 WHILE BankBalance > 50 do
 BEGIN
 SupplierAccount:=SupplierAccount + 50;
 BankBalance:=BankBalance - 50
 END;

 WHILE positive > 0 DO
 positive:=positive-1;

5.3.3 REPEAT statement

Syntactically this is:

 REPEAT

 {<statement>}

 UNTIL <expression>

<expression> must yield a value of type Boolean and is evaluated
after each execution of the statement body. The statement body can
consist of any number of any simple or structured statements. It can
be a compound statement delimited by the reserved words REPEAT and
UNTIL although BEGIN and END may also be included as delimiters if
preferred. The statement body is executed at least once, and
repeatedly executed each time <expression> yields Boolean value
FALSE. Overall

-53-

QL Pascal Development Kit Statements

REPEAT statement execution is terminated when <expression> yields
Boolean value TRUE.

 REPEAT
 PurchaseAccount:=PurchaseAccount + 50;
 BankBalance:=BankBalance - 50;
 UNTIL BankBalance < 50;

is an example of a valid REPEAT statement (which may give rise to an
overdraft!).

5.4 Branching statements

Control selection and transfer in a program is effected using IF and
CASE statements. Control transfer, alone, which can be brought about
by procedure and function invocations in statements, can also be
effected using the GOTO statement.

-54-

QL Pascal Development Kit Statements

5.4.1 IF statement

An IF statement can take one of two syntactic forms:

i) IF <expression> THEN <statement>

ii) IF <expression> THEN <statement>
 ELSE <statement>

<expression> must return a value of type Boolean. In form 1)
<statement> is executed when <expression> yields a value of TRUE; for
<expression> value FALSE, execution continues at the point
immediately following the IF statement. In form ii) the first
<statement> is executed for <expression> value TRUE and the second
<statement> is executed for <expression> value FALSE. <statement> is
any simple, structured or compound statement. Form 1) is really an
abbreviation of form i1) with the second <statement> being the empty
statement.

In the following complex expression:

IF (<expression1> (AND|OR) <expression2>)
THEN <statement1>
ELSE <statement2>

<expression1> will be evaluated first followed by the evaluation of
<expression2> followed by the application of the logical operator
before the actioning of the IF statement. Expression evaluation
complies with the precedence rules described earlier in this section.
For complex expressions, it may then be more practical to build a
nested IF statement construct:

IF <expression1> THEN
 IF <expression2> THEN <statement>

This may have the advantage of streamlining the IF statement
execution, <expression2> will not be evaluated if <expression2>
yields value FALSE. Nesting within IF statements can exist to a
considerable degree. In such cases each ELSE is paired with the
nearest unpaired THEN; if necessary BEGIN / END pairs can be used to
ensure

-55-

QL Pascal Development Kit Statements

the intended IF statement nested construct action.

e.g.

The construct

IF <expression1> THEN
 IF <expression2> THEN
 <statement1> ELSE
 <statement2>

could be intended as

 i)
IF <expressionl> THEN
 BEGIN
 IF <expression2> THEN
 <statement1>
 ELSE
 <statement2>
END

or

 ii)

IF <expression1> THEN
 BEGIN
 IF <expression2> THEN
 <statement1>
 END
ELSE
 <statement2>

Without the use of a BEGIN / END pair the action construct taken
would be that of form i).

NOTE A semi-colon must not be inserted before the reserved word ELSE.

USEFUL HINT Conditional assignment of Boolean variables to Boolean
values as in

-56-

QL Pascal Development Kit Statements

IF x = y THEN Thesame := TRUE
 ELSE Thesame := FALSE;

can be actioned using simpler and more efficient assignment
statements of the form

<Boolean identifier> := <expression>

thus,

Thesame := X = y;

has the same effect as the preceding IF statement.

The following is an example of a nested IF statement construct to
test for several positive values of the variable 'number':

IF number = 10 OR number 20 THEN
 <action1>
ELSE
 IF number = 30 THEN
 <action2>
 ELSE
 IF number = 40 THEN
 <action3>

Testing for several possible values of a variable as in the above
example, can be accomplished more concisely by use of the CASE
statement.

-57-

QL Pascal Development Kit Statements

5.4.2 CASE statement

Syntactically this is:

CASE <expression> OF

<case- label List>":"<statement>

{<case- Label list>":"<statement>}

END("; "}

where

<case-label list> =
<Label-constant>{", "<label-constant>}

<expression> is evaluated and then acts as the selector for
comparison with the <label-constant> in <case-label list>.
<expression> value and <label-constant> are of any ordinal type. Upon
a precise match of <expression> value and <label-constant>, the
<statement> corresponding to the <case-label List>, of which the
matching <label-constant> is part, is executed. All occurrences of
<label-constant> in any <case-label list> must be distinct and
unique. It is an error if there is no match of <expression> value and
<label-constant>. Upon completion of execution of a selected
<statement>, program execution continues at the point immediately
following the CASE statement (unless <statement> incorporates a GOTO
statement). <statement> can be any Simple, structured or compound
statement. <Label-constant > cannot be an identifier.

CASE number OF
 10,20:<action1>;
 30:<action2>;
 40:<action3>
END;

This example achieves the same results as the example at the end of
the discussion about the IF statement.

-58-

QL Pascal Development Kit Statements

NOTES

i) Case label constants are not labels as declared in a label
declaration part of a block; they cannot be used as target
destinations for GOTO statements.

ii) Although the <case-label-list> may contain a <label constant>
to which the <expression> may never be evaluated, its
inclusion in the <case-label-list> is to be discouraged as it
serves no useful purpose.

5.4.3 GOTO statements

Syntactically this is:

GOTO <label>[";"]

This states that program control is to be unconditionally transferred
to the simple or structured statement prefixed by <Label>. <Label> is
any whole number in the range 0 to 9999. Target destination syntax:

<label> ":" <statement>

Each label must be predeclared in the label declaration part of a
block (see section 3.1) and can prefix a Single statement in only
that block and not in any blocks local to that block.

A GOTO statement can only cause a branch to certain statements and
the placement of labels must accord with the rules governing the
target destination of a GOTO statement which state that the target
destination can be any of the following:

i) the statement that contains the GOTO

ii) another statement in the statement sequence that the GOTO is
part of, or a statement in a statement-sequence that contains
the GOTO's statement sequence

-59-

QL Pascal Development Kit Statements

iii) another statement in any block that contains the GOTO, as long
as that statement is not part of the action of a structured
statement (aside from the compound statement that forms a
block's statement part) 1.e. the target label must be at the
outermost Level of a structured statement.

If, as in Rule iii), a GOTO statement is used to jump to a statement
in a containing block, then the block containing the GOTO statement
and all other activated nested blocks contained by the target block
become de-activated. (Block activation is described in section 6).

e.g.

PROGRAM AllGotos(input);
LABEL 2,9999;
VAR ch : CHAR;
 PROCEDURE Inner;
 BEGIN
 .
 .
 .
 GOTO 9999
 END;.
BEGIN
 2:READ(ch);
 IF ch = 'E' THEN Inner
 ELSE goto 2;
9999:END.

WITH statement

The only remaining statement is the WITH statement, which applies to
variables of type RECORD and is therefore discussed with the Record
type in section 7.3.

-60-

OL Pascal Development Kit Subprograms

Chapter 6: Subprograms

6.1 Procedures

Procedures and functions are subprogram blocks that reside within the
main program block to which program control can be passed. Program
development can start with the main program block and gradually
progress with the introduction of procedures and functions when
required. Repeated code can be defined as a subprogram block. A
Subprogram can be used to 'isolate’ source code that is very complex
or is likely to require periodic amendment. A function differs from a
procedure in that it returns a result that is associated with the
identifier that is used to define the function. Procedures and
functions must be declared at the end of the definitions and
declarations part of all blocks - the program block or a procedure or
function block.

A Procedure declaration

A procedure declaration has the form:

<procedure-declaration> =
PROCEDURE <procedure-identifier>

[<formal-parameter-List>]";"[<directive>";"]

{<definitions>}

{<declarations>}

BEGIN

 {<statement>}

END";"

The procedure definitions and declarations are local to the
procedure. Global definitions and declarations are available for
reference and alteration by the procedure (except as control
variables in FOR statements - see section 5) unless excluded by the
use of global identifiers as identifiers for local definitions and
declarations. The statement can be any simple or compound or
structured statement. Local variables are active only for the period
of activation of the procedure.

-61-

OL Pascal Development Kit Subprograms

Activation

A subprogram becomes activated when it is invoked and becomes de-
activated upon return to its calling point. Thus if an invoked
Subprogram invokes a nested subprogram a chain of active subprograms
exists.

A Procedure call

A procedure is invoked by call in a procedure statement:

<procedure-statement> = <procedure-identifier>
[<actual-parameter-list>][";"]

The procedure identifier is specified, followed by any actual
parameters required as specified in the formal parameter list of the
procedure declaration. For order of evaluation of the parameters see
Appendix C.

Recursion

A procedure (and a function) can call itself from its own statement
body, and in so doing becomes a recursive procedure. This is best
explained using an example:

PROGRAM invert (input, output);

 PROCEDURE stack; {example of recursion}

 VAR Letter:CHAR;

 BEGIN

 READ(letter);
 IF NOT EOLN THEN stack;
 {check no more letters in input Line}
 WRITE(Letter);
 END;

BEGIN
 stack;
END.

produces for an input line of 'to illustrate recursion’:

noisrucer etartsulli ot
(i.e. a reversal of the input line)

-62-

OL Pascal Development Kit Subprograms

6.2 Functions

A function declaration has the form:

<function-declaration> =
FUNCTION <function-identifier>

[<formal-parameter-list>]":"<result-type>";"
[<directive>";"]

{<definitions>}

{<declarations>}

BEGIN

{<statement>}

END" ; "

The function definitions and declarations are local to the function.
Global definitions and declarations are available for reference by
the function (except as control variables in FOR statements - see
section 5) unless excluded by the use of global identifiers as
identifiers for local definitions and declarations. The statement can
be any simple, compound or structured statement. Local variables are
active only for the period of activation of the function.

A function declaration is like that of a procedure declaration with
the exception of a result type associated with the function
identifier. The result type is the identifier of an already defined
type; a new type cannot be defined in a function declaration. The
result type can be any simple or pointer type. The intention of a
function is to return a single result type, although like a
procedure, results can be returned through the formal parameter list,
using VAR parameters.

A Function call

A function is invoked by the appearance of a function designator in
an expression:

<function-designator> = <function-identifier>
(<actual-parameter -list>]

-63-

OL Pascal Development Kit Subprograms

The statement body of a function must contain at Least one assignment
to the function identifier and the result of the function is the Last
value assigned to the identifier. If no such assignment is made, then
the result is undefined. See Appendix C.

<function-identifier> ":=" <expression>

The value of the expression must be assignment compatible with the
result type of the function.

-64-

OL Pascal Development Kit Subprograms

6.3 Formal parameter list

There are four kinds of formal parameters that can be specified in a
procedure or function declaration:

<formal-parameter-list> =
"("<formal-parameter -section>
"*"<formal-parameter-section>}")"

<formal-parameter-section> =
<vaLue-parameter-section>
<variable-parameter-section>
<proceduraLl-parameter-section>
<functional-parameter~section>

i) value parameters are similar to local variable declarations in
Subprogram blocks and are initialized when the subprogram is
invoked. The action of the Subprogram does not affect the
actual parameter expressions that provide the value parameters
at subprogram call time.

ii) variable parameters are again similar to local variable
declarations in subprogram blocks but an assignment, within
the subprogram, to a variable parameter is equivalent to an
assignment to the parallel actual parameter specified in the
Subprogram call.

iii) procedural parameters are similar to local procedure
declarations in subprogram blocks, with the actual procedures
declared elsewhere.

iv) functional parameters are similar to local function
declarations in subprogram blocks, with the actual functions
declared elsewhere.

The number and type of the actual parameters specified in the
Subprogram call must be the same as, and must be specified in the
same order as, the number and type of the parameters specified in the
Subprogram itself; this applies to all possible combinations of
Subprogram parameters. Value and variable parameters must be
Specified using already existing type definitions. Value and variable
parameter identifiers cannot be used as identifiers for definitions
and declarations within the subprogram block. For order of evaluation
of the parameters see Appendix C.

-65-

OL Pascal Development Kit Subprograms

Value parameters

<value-parameter-specification> =
<identifier>{","<identifier>}
":"<type-identifier>

The initial value of a value parameter is Supplied by an actual
parameter. The actual parameter that corresponds to a value parameter
can be any expression that is assignment compatible with the value
parameter. An assignment to a value parameter does not alter the
value of the actual parameter of the subprogram call. File type
variables (or structured variables with file-type components) cannot
be passed as value parameters.

e.g.

PROGRAM valpars(output);
 VAR a,b: integer;

PROCEDURE nochange(a,b: INTEGER);
 {globals a and b excluded from nochange}

BEGIN
 a:=b;
 WRITELN(a,b);
 {a and b effectively Local variables}
END;

BEGIN
 a:=1;
 b:=5;
 WRITELN(a,b);
 nochange(a, b+4);
 {globals a and b+4 passed as actual parameters}
 WRITELN(a,b);
 {upon return globals a and b remain unchanged}
END.

produces output:

1 5
9 9
1 5

-66-

OL Pascal Development Kit Subprograms

Variable parameters

<variable-parameter-specification> =
VAR <identifier>{", "<identifier>}
":"<type-identifier>

The reserved word VAR must be repeated with each additional type of
variable parameter. The actual parameter that corresponds to a
variable parameter must be a variable access and not a value, such as
a constant or function call; thus variable parameters act as
synonyms, local to subprograms, for accessing variables declared
elsewhere and changes to variable parameters amount to changes to the
corresponding actual parameters. The following four’ restrictions
apply to variables passed to variable parameters:

The actual parameter must possess the same type as its corresponding
variable parameter.

The actual parameter may not denote a component of a packed variable
(although a packed variable may be passed as a parameter).

The actual parameter may not denote a field that is the selector of a
record's variant part.

If a file buffer variable f* is passed as the argument of a variable
parameter, it is an error to modify the value of the file f.

-67-

OL Pascal Development Kit Subprograms

e.g.

PROGRAM varpars(output);

VAR radius: INTEGER;

 PROCEDURE cube(VAR r: INTEGER);

 BEGIN
 r:=r*r*r;
 END;

BEGIN
 radius:=5;
 WRITELN(radius);
 cube(radius);
 WRITELN(radius);
END.

produces:

5
125

Actual parameters are passed to variable parameters when they require
modification by the called subprogram. Although passing actual
parameters to value parameters is more secure, it is more demanding
on storage as a 'copy' is made of the actual parameter to act as the
value parameter; so, for example, passing an array as a value
parameter will require an extra amount of storage equal to the size
of the array.

Procedural and functional parameters

A procedural parameter is a synonym, local to the called subprogram,
for a procedure declared elsewhere:

<procedural-parameter-specification> =
<procedure-heading>

<procedure-heading> = PROCEDURE
<identifier>[<formal-parameter-List>]

-68-

OL Pascal Development Kit Subprograms

OL Pascal Development Kit Subprograms

produces output:

1 5
9 9
1 5

Variable parameters

<variable-parameter-specification> =
VAR <identifier>{", "<identifier>}

":"<type-identifier>

The reserved word VAR must be repeated with each additional type of
variable parameter. The actual parameter that corresponds to a
variable parameter must be a variable access and not a value, such as
a constant or function call; thus variable parameters act as
synonyms, local to subprograms, for accessing variables declared
elsewhere and changes to variable parameters amount to changes to the
corresponding actual parameters. The following four’ restrictions
apply to variables passed to variable parameters:

The actual parameter must possess the same type as its corresponding
variable parameter.

The actual parameter may not denote a component of a packed variable
(although a packed variable may be passed as a parameter).

The actual parameter may not denote a field that is the selector of a
record's variant part.

If a file buffer variable f* is passed as the argument of a variable
parameter, it is an error to modify the value of the file f.

-69-

OL Pascal Development Kit Subprograms

BEGIN
 i:=5
 WRITELN(i);
 Apowerof(i, square);
 {only procedural parameter identifier specified}
 WRITELN(i);
 i:=3;
 WRITELN(i);
 Apowerof(i, cube);
 {only procedural parameter identifier specified}
 WRITELN(i)
END.

produces:

 5
 25
 3
 27

6.4 The FORWARD directive

In the declaration of a procedure or function, the forward directive
can be specified. It allows a forward reference whenever a subprogram
identifier must appear in advance of its declaration. This directive
has been provided to cater for mutually recursive subprograms. The
Subprogram identifier and its formal parameter lists (and result type
if it is a function) are specified followed by the reserved word
FORWARD; the subprogram block can then be declared anywhere beyond
this point provided the declaration is nested in the same region and
nested at the same level as the FORWARD specification. The block
declaration is headed by the relevant subprogram reserved word
followed by just the subprogram identifier:

<procedure-identification> = PROCEDURE <identifier>

<function-identification> = FUNCTION <identifier>

-70-

OL Pascal Development Kit Subprograms

e.g.

PROGRAM EgForward;
 .
 .
 .
PROCEDURE first(x,y,z: INTEGER) ; FORWARD;
 {first needs to call second}

PROCEDURE second(i,j,k,l,m: INTEGER);
 {second needs to call first}

BEGIN
 <statement>
 {contains a call to first}
END;

PROCEDURE first;

BEGIN
 <statement>
 {contains a call to second}
END;

BEGIN
 <statement>
 {program block}
END.

-71-

QL Pascal Development Kit Structured types

Chapter 7: Structured types

7.1 Enumerated, Subrange and Set types

An Enumerated type is a group of values that are named and ordered by
the programmer. An enumerated type is treated as an ordinal type.

A subrange type is defined as a specific subset range of any ordinal
type. Thus a subrange type can be defined as a subset range of an
enumerated type or as a subset range of any of the ordinal types
provided by QL Pascal 68000 - integer, char and Boolean (although
type Boolean constitutes only 2 values).

A set type is defined in order to represent a set or a group of
values of any ordinal type. A variable of type SET represents a
collection of ordinal values whereas a subrange or enumerated type
variable represents one occurrence of an ordinal value.

Enumerated types

An enumerated type is defined by:

<enumerated-type> "(" <identifier-list> ")"

<identifier-list> = <identifier>{", "<identifier>}

<identifier-list> is a group of programmer specified identifiers or
constants. Ordinal values associated with the identifier list
correspond to the position of the constant in the list starting with
position 0. Enumerated type constants are like normal identifiers and
are subject to the normal scope rules governing identifiers except
that in type definition and variable declaration parts of a block, a
pair of enumerated type constants is used in defining a subrange type
of the enumerated type.

e.g.

TYPE Colour (red, blue, green, orange);

 Points (north, south, east,west);

 Letters = (a,b,d,e,c,f);

is an example of several valid enumerated type definitions.
Operations between variables of enumerated types are governed by the
assignment compatibility rules (see section 5) and enumerated type

-72-

QL Pascal Development Kit Structured types

variables can act as arguments for ordinal functions:

with reference to the above example:

PRED(green)

is

blue

SUCC(green)

is

orange

south > north

yields Boolean value TRUE

west < east

yields Boolean value FALSE

ORD(c)

is 4

ORD(d)

is 2

which verifies that in 'Letters',

d < c

-73-

QL Pascal Development Kit Structured types

The control variable in a FOR statement can be a variable of an
enumerated type. e.g.

PROGRAM EnumForLoop(output);

VAR

 ControlVariable : (alpha, beta, gamma, delta);

BEGIN

 FOR ControlVariable := beta TO delta DO

 WRITELN('3 of these lines');

 FOR ControlVariable := delta DOWNTO alpha DO

 WRITELN('4 of these lines'); 7

END.

Subrange type

A subrange in a type definition is specified:

<subrange-type> = <constant>".."<constant>

Subrange types can only be defined for ordinal types. The constants
that delimit the range must both belong to the same host type and the
first constant, known as the Lower bound, must be less than or equal
to the other constant or upper bound. For other than the QL Pascal
68000 provided ordinal types, the host ordinal type must be defined
as an enumerated type. The following is an example of enumerated and
subrange type definitions:

-74-

QL Pascal Development Kit Structured types

TYPE

reds = (crimson, scarlet, vermillion, maroon);
{enumerated type}

plus = 1..1000; {subrange type of host type integer}

Somechars = 'E'..'T';

{subrange type of host type char}

somereds = scarlet..maroon;
{subrange type of host type reds}

ShortbutOK = 'm'..'m';
{subrange type of host type char}

Like enumerated type variables, operations between subrange type
variables must conform to the assignment compatibility rules (see
section 5). Subrange type variables can also be used as arguments for
ordinal functions.

SET type

A SET type is defined as:

<set-type> = [PACKED] SET OF <base-type>

<set-type> is an identifier that conforms to normal scope rules.
<base-type> is any ordinal type. A variable of type set consists of a
group of elements of type <base-type > which are called members. A
variable of type set can consist of any subset of the members of the
base type including the full set of members and the subset containing
no members. e.g.

-75-

QL Pascal Development Kit Structured types

TYPE

Reds = (crimson, scarlet, vermillion, maroon);
{enumerated type}

Redset = SET OF Reds;
{the set of the enumerated type Reds}

Acharset = SET OF 'a'..'m';
{the set of subrange type 'a' to ''m'}

VAR
RedHues : Redset; {a variable of the set type Redset}

SameHues : SET OF Reds;
{a variable of type set of type Reds}

Afewchars : Acharset;
{a variable of the set type Acharset}

SomeIntegers : SET OF 0..5;
{a variable of type set of the

integers 0 to 5}

Sets are formed from their members using set constructors:

<set-variable> = ("[" | "(.") <empty> |
(<element>{,<element>}) ("]" | ".)")

where element is an expression. A set containing no elements -
<empty> - is constructed using the empty set - "[]". For set
construction, an expression includes the form m..n which constitutes
all the elements from m to n including elements m and n; if n < m
then [m..n] denotes the empty set. When constructing a set, the
elements of the set constructor must all be of the same type as the
type of <set-variable>. Set constructor elements may be specified as
variables as well as constants. NOTE Variables, in set constructors
of type subrange of integer, are restricted to the subrange 0..255. A
run-time error is generated if the value of the set constructor
variable is outside this range. For order of evaluation see Appendix
C.

-76-

QL Pascal Development Kit Structured types

E.g. referring to the sets of the previous example:

[crimson] and [scarlet..maroon]

are both valid set constructors for variables RedHues and
SameHues

['a'], ['a..'c','fF'..'i','k'..'m']

are both valid set constructors for variable Afewchars

['m'..'p']

is an invalid set constructor for variable Afewchars

NOTE Due to the large range of 32 bit: integers, 'Set of Integer' is
not permissible in QL Pascal 68000.

The following relational operators are applicable to set operands:

= test on equality

<> test on inequality

<= test for left hand operand being a subset of right hand
 operand

>= test for left hand operand being a superset of right hand
 operand

IN test for set membership

and for set variables a and b:

i) a=b yields true if all members of both a and b are
identical

ii) a<>b yields true if any member of a cannot be found in b,
or vice versa

iii) a<=b yields true if every member of a is also a member of
b

-77-

QL Pascal Development Kit Structured types

iv) a>=b yields true if every member of b is also a member of a

v) x IN y yields true if ordinal variable x is a member of the
set variable y. Here, variable x must be of the same ordinal
type as the base type of the set variable y.

E.g., referring to the ongoing example:

[crimson,maroon] <= RedHues

yields true provided RedHues is constructed from members
that include crimson and maroon

and for variable Ared of type Reds

Ared IN RedHues

yields true if the shade of red assigned to Ared is a Current
member of RedHues

NOTE All relational operators applicable to sets are all at the same
precedence Level (see precedence rules in section 5).

Once constructed, sets can be manipulated using the following
operators between set operands of the same type to yield set values
of the same type as the set operands:

* set intersection

+ set union

- set difference

For two sets a and b, (a*b) is the set whose members are currently in
both a and b; (a+b) is the set of members formed by merging sets a
and b; (a-b) is the set of set a's members that are not also in set b

-78-

QL Pascal Development Kit Structured types

e.g.

[1..6,9] * [5..7] is [5,6] [or [5..6])

[1..4,6] + [5,7..9] is [1..9]

[1..9] - (2..8] is [1,9]

Through the use of sets it is possible to produce neat, structured
and comprehensible algorithmic program solutions.

PACKED data

The ISO standard specification includes the reserved word PACKED with
regard to all structured data types with the exception of pointer
types, to provide the option of storing structured data contiguously
thus occupying the minimum number of media storage words required.
Data can generally be packed at the expense of speed of access.

7.2 The ARRAY type

The ARRAY type is one of several structured data types provided for
use in QL Pascal 68000 programs. The array is an almost universal
data type among high-level programming languages.

In QL Pascal 68000, the ARRAY type defines a structure that is a
uniform collection of a fixed number of components, or elements, of
any simple, structured or pointer type. An array is defined:

<array-type> =
[PACKED] ARRAY
("E" | "(.") <index-type>{,<index-type>}("]" | ".)")

OF <component -type>

<index-type> = <ordinal-type>

<index-type> can be specified as an existing type or a newly defined
type. <index-type> can be defined separately or in the array
definition itself. <index-type > must be an ordinal type. Thus values
of type real

-79-

QL Pascal Development Kit Structured types

Cannot be used to specify array bounds. <ordinal-type> includes
Subrange and enumerated types. <index-type > can have any number of
occurrences within the square brackets in order to define what can be
thought of as a multi-dimensional array.

<component-type> may be of any type excluding the type of the array
itself. <component-type> can be an existing or newly defined type.
<component-type> can be defined separately or in the array definition
itself. <component-type > can, itself, be of type array. Unlike
<index-type >, <component-type > can be of type real.

An array definition can be specified alongside an array variable
declaration in the variable declaration part of a block (see section
4). e.g.

Board = ARRAY [1..8,1..8] OF INTEGER;

is a valid example of an array definition consisting of 8 'rows' of 8
''rows' of elements of type integer - a total of 64 elements. Board
could also be defined:

Board = ARRAY (1..8] OF ARRAY [1..8] OF INTEGER;

to achieve the same array type.

Newtype = CHAR;

TrueFalseLetters = ARRAY [BOOLEAN, CHAR] OF newtype;

or

TrueFalseLetters = ARRAY [BOOLEAN] OF
 ARRAY [CHAR] OF CHAR;

are different forms of definition of the same 2-dimensional array.

-80-

QL Pascal Development Kit Structured types

The following are examples of array definitions including the packed
option (see PACKED data section 7.1):

PACKED ARRAY[1..10] OF ARRAY[1..20] OF REAL;

ARRAY[1..10] OF PACKED ARRAY[1..20] OF REAL;

An array variable can be referenced in its entirety, or one component
at a time. Assignments may be made between array variables or between
array variable components; in both cases the assignment compatibility
rules apply (see section 5).

String types

String constants or literals may be assigned to packed array
variables provided they have the same number of components as
Specified in the array variable definition. In such cases assignment
compatibility dictates that the component type of the array is of
type char and that either, the array variable is one-dimensional or
assignment is directed at one dimension of a multi-dimensional array
variable. Type packed array of char is used for string types.

Accessing an array variable component is brought about by the use of
indexes or subscripts which when specified in a reference to an array
variable, allow immediate access to the array component through what
is known as an indexed variable. For order of evaluation see Appendix
C. Because there is no run-time overhead when accessing array
variable components, arrays, like records, are known as random-access
data structures.

Indexed variable

An indexed variable is represented by:

<indexed-variable> =
<array-variable>"["<index-expression>

{,<index-expression>}"]"

-81-

QL Pascal Development Kit Structured types

<index-expression> is an expression which is evaluated to yield a
value that must be assignment compatible with the index-type of the
array variable. If the value of the index expression is outside the
range specified by the index type a run-time error will be generated.
<indexed-variable> is a variable of the same type as the component
type of the array variable and can be treated in the same way as an
ordinary variable apart from acting as the control variable in a FOR
statement.

when referencing an indexed variable, the number of index expressions
Specified must be equal to the number of dimensions of the array
variable of which the indexed variable is a part.

The following is an example of a program containing array definitions
and declarations:

PROGRAM arrays(output);

CONST
 Linelength = 33;
 Pagelength = 24;
 NumberOfTitles = 3;

TYPE
 Title = PACKED ARRAY [1..Linelength] OF CHAR;
 Titles = ARRAY [..NumberOfTitles] OF Title;
 Pagesize = PACKED ARRAY [1..Pagelength] OF
 PACKED ARRAY [1..Linelength] OF CHAR;

VAR
 Headings : Titles;
 wholepage : Pagesize;
 Line, Column : INTEGER;

-82-

QL Pascal Development Kit Structured types

BEGIN
 Headings[3] := 'QL Pascal 68000 Reference Guide ';

 FOR Line := 1 TO Pagelength DO
 FOR Column := 1 TO Linelength DO
 wholepage [Line,Column] :=
 Headings[3, ((Line + Column - 2)

MOD Linelength) +1];
 FOR Line := 1 TO Pagelength DO
 BEGIN
 FOR Column := 1 TO Linelength DO
 WRITE (Wholepage({Line, CoLumn]);
 WRITELN
 END
END.

PACK and UNPACK

Although occupying less space, packed data generally requires a
greater access time for its components; the diminution of efficiency
may not warrant the space saving gained by using the packed option
when defining arrays. The procedures PACK and UNPACK are specified in
the ISO standard to provide for the packing and unpacking of array
data:

PACK" ("<unpacked-array>
","<starting-subscript>", "<packed-array>")"

UNPACK" ("<packed-array>
","<unpacked-array>", "<starting-subscript>")"

PACK packs <unpacked-array> into <packed-array>, starting at
<unpacked-array >[<starting-subscript>]. It is an error for any
component of <unpacked-array > to be undefined.

UNPACK unpacks <packed-array > into <unpacked-array >, starting at
<unpacked-array >[<starting-subscript>]. It is an error for any
component of <packed-array > to be undefined.

Run-time errors will occur if the effective start and destination
array sizes are inconsistent. See also Appendix C.

-83-

QL Pascal Development Kit Structured types

7.3.1 The RECORD type

The RECORD TYPE, Like the ARRAY TYPE is another structured type that
can be defined for use in QL Pascal 68000. It, too, is a structured
collection of elements or components; the essential difference is
that record structures are not necessarily uniform collections of
components. The components of a record type are generally referred to
as fields.

Record type can, if required, be specified as the component type when
defining arrays.

Among other uses the Record type was included in the design of Pascal
to meet the often less ordered data type requirements of the
commercial world.

A record type is represented as:

<record-type> = [PACKED] RECORD <field-list> END[";"]

<field-list> = [((<fixed-part>[";"<variant-part>]) |
<variant-part>)[";"]]

<field-list> is a collection of variable declaration-like data type
Specifications. A record type is a field list enclosed by the
reserved words RECORD and END. So starting with the fixed part of a
record:

<fixed-part> = <record-section>{";"<record-section>}

<record-section> = <identifier>{", "<identifier>}
": "<type>

which is best expanded upon by the use of an example:

TYPE
profile = RECORD

ChristianName, SurName:ARRAY[1..15] OF CHAR;
Sex: (male, female);
Married: BOOLEAN;
 Age:16..65
END;

worktype =
 (office, machineshop, assemblyLine, despatch, security);

-84-

QL Pascal Development Kit Structured types

VAR
person:ARRAY [1..100] OF PROFILE;
employee:ARRAY[1..50] OF RECORD

person:profile;
job:worktype;
firstemployed:1975..1990;
pay:5000..30000;
payletter:'A'..'G'

 END;
oneperson: profile;
secondperson: profile;

A record definition constitutes the region for the identifiers it
contains. Within a given record definition a field identifier must be
unique. The identifier does not conflict with identifiers outside its
region. Thus in the example the array identifier person' does not
conflict with the identifier 'person' of the array identifier
'employee'. This also applies to regions that contain nested record
definitions; identifiers in a nested region do not conflict with
identifiers local to the outer regions nested within the entire
region.

Assignments may be made between variables of type record that are
assignment compatible. This means that both variables must be
declared using the same type. Thus in the example, oneperson,
secondperson and each component of the array person are all
assignment compatible:

oneperson := secondperson;

person[i] := oneperson;

person[i] := secondperson;

In such assignments, each field of the left-hand variable is assigned
the value of the corresponding field of the right-hand variable.

An individual field of a record variable is referenced using a field-
designator:

-85-

QL Pascal Development Kit Structured types

<field-designator> = (<record-variable>
"."<field-specifier>) |
<field-designator-identifier>

The field designator acts as a variable identifier, with the
exception of acting as a control variable in a FOR statement (see
section 5).

e.g.

oneperson.ChristianName := 'Blaise

secondperson.sex := Male;

person(i].Age := 33;

employee(i].person.Married := TRUE;

The last line above illustrates how large field designators can be
for record type definitions containing structured types. In such
cases the specification of record variable field access can be
shortened, with the help of the WITH statement, by using a field
designator identifier.

The relational operators cannot be applied to record type operands.
Record variables can only be compared on a field by field basis,
which can involve the use of IF statements nested to a considerable
degree.

-86-

QL Pascal Development Kit Structured types

7.3.2 WITH statement

The form of the WITH statement is

with-statement> = WITH <record-variable>
{,<record-variable>} DO
<statement>

The field identifiers of <record-variable> constitute field
designator identifiers. Within <statement> either a field-designator
or a field designator identifier can be used to specify a record
variable field access. The list of record-variables is the defining
point for the field designator identifiers whose region is
<statement>. <statement> is any simple or compound or structured
statement.

WITH oneperson DO
 Age := 34,

WITH oneperson DO
 BEGIN
 Age := 35;
 ChristianName := secondperson.ChristianName
 END;

WITH secondperson DO
 IF secondperson.Married THEN
 Age := 36;

are all examples of valid WITH statements. The statement body of a
WITH statement can be or can contain a WITH statement; specifying
more than one record variable in the WITH statement line itself can
be regarded as a nested WITH statement construct:

-87-

QL Pascal Development Kit Structured types

e.g.

 V1,V2,...Vn are record variables

 WITH V1,V2,...Vn DO <statement>

is equivalent to

 WITH V1 DO
 WITH V2 DO
 .
 .
 .
 WITH Vn DO <statement>

Conflict between identical field designator identifiers in such cases
is resolved by associating the field designator identifier with the
relevant record variable of the nearest WITH statement that contains
the reference to the field designator identifier.

e.g.

WITH oneperson, secondperson DO
 Age := 36;

which is the same as

WITH oneperson DO
 WITH secondperson DO
 Age := 36;

means

WITH oneperson, secondperson DO
 secondperson.Age := 36;

The record variable referred to in a WITH statement is accessed
before execution of the WITH statement body commences.

-88-

QL Pascal Development Kit Structured types

Variant record parts

The record type provides for the definition of versatile data
structures by allowing groupings of all other data types - type
unions. By specifying a variant record part in a record type
definition, a high degree of flexibility can be introduced to such
data structures. A variant record part allows for variables of
different data types to be overlaid by the use of coincident
selectable groupings of data type definitions. Selection of a
particular grouping of data type definitions is actioned through the
use of a tag field defined using a tag type, or just a tag type. The
tag type must be a predefined ordinal data type. The tag field is
optional; the tag type must always be present. This scheme allows for
the same actual data to be associated with several variables
possessing different data type definitions.

NOTE This opens up many possibilities in respect of, say, data
conversion but such ''tricks' could create program portability
problems, as low-level data representation is implementation
dependent.

Variant part definition superficially resembles a case statement:

<variant-part> = CASE <variant-selector> OF
<variant>{";"<variant>}

<variant-selector> (<tag-field>":"] <tag-type>

<variant> = <case-constant-List>":" "("<field-list>")"

case-constant-list> = <case-constant>
{", "<case-constant>}

<field-list> = {(<identifier>{", "<identifier>}
":"<type>[";"]}

<case-constant> must be a valid ordinal value for <tag-type> which
can be any ordinal type. Each case constant within the CASE part of a
variant part must be distinct and unique. The identifiers in all
variant parts must be distinct and unique within the record
definition although they may be re-used within nested record
definitions. Field identifiers, as in the fixed part of a record
definition can be defined to have any type. A field list contains
zero or more identifiers. It should be noted that when the CASE
construct is used with variant parts there is no corresponding END
statement.

-89-

QL Pascal Development Kit Structured types

e.g.

TYPE
 shape = (point, circle, triangle, square);

 drawing = RECORD

CASE figure:shape OF
point:();

circle:(radius:real);
triangle:
 (side1,side2:real; angle:0..360);
Square:(side:real)

 END;
VAR

 designpart: drawing;

-90-

QL Pascal Development Kit Structured types

e.g.

TYPE
 debtor = (credit, slowpayer, baddebt)

 Customer = RECORD

 name: ARRAY[1..30] OF CHAR;

 address:ARRAY[1..5,1..30] OF CHAR;

 CASE debtor OF
 credit:
 (despatchdetails:ARRAY[1..20] OF CHAR);

 slowpayer: (bankphoneno: integer);
 baddept:
 (Liquidator :ARRAY[1..30] OF CHAR)

 END;
VAR

 accountprofile:customer;

'drawing' is an example of a record definition containing just a
variant part and 'customer' a fixed and a variant part. 'drawing'
makes use of a tag field; note that the case part of 'drawing' is the
defining point for 'figure’. 'customer' uses just a tag type in its
case part. A tag field is interrogated to determine which grouping of
its region is currently active; the currently active grouping can be
changed by valid assignment to the tag field. Run-time errors can
occur if assignments are made in respect of groupings that are not
active. Groupings that are not active are totally undefined. It is
also an error to access a field with an undefined value. See Appendix
C. A tag field cannot be passed as a parameter in a procedure or
function invocation (see section 6).

-91-

QL Pascal Development Kit Structured types

e.g. to determine which grouping is active

CASE designpart.figure OF

 point:<statement>;

 circle:<statement>;

 square:<statement>;

 triangle:<statement>

END;

or

WITH designpart DO

 CASE figure OF

 point :<statement>;

 circle:<statement>;

 square:<statement>;

 triangle:<statement>

END;

and to change the active grouping

designpart.figure := circle;

or

WITH designpart DO

 figure := circle;

If a tag field is not used, assignment to a field in a grouping
renders that grouping active. So determining which group is active is
unnecessary (and very difficult - tag type is a type definition and
not a variable declaration!).

-92-

QL Pascal Development Kit Structured types

7.4.1 Pointer types

The data structure definitions dealt with so far relate to what is
known as static variables. These are predeclared units of fixed size
which exist for the entire duration of an activation of the block to
which the variable is local. It is possible to create data structures
which can vary in size and complexity throughout the execution of an
QL Pascal 68000 program. These are known as dynamic data structures
and bear no direct correlation to the static structure of an QL
Pascal 68000 program. The generation and administration of dynamic
data structures is handled by the predefined identifiers NEW and
DISPOSE in conjunction with pointer values.

A variable of type pointer is used to reference, or indirectly
access, a variable of the pointers domain type:

<pointer-type> = ("^" | "@") <domain-type>

<domain-type> is an identifier defined at a higher block level or
anywhere in the same type definition part of which the pointer type
identifier is part.

e.g.

TYPE
 portionstart = ^portion
 portion = RECORD
 order:integer;
 Size:REAL;
 content ARRAY[1..10] OF CHAR;
 colour: (red, blue, green)
 END;
 integerpointer = ^INTEGER;
 item = ^chain
 chain = RECORD

-93-

QL Pascal Development Kit Structured types

 chainelements:ARRAY(1..5] OF INTEGER;
 NextItemInChain: item
 END;

VAR
 longchain: item;
 oneitem:chain;
 piece:portion;
 locationofpiece:portionstart;

are examples of valid pointer type definitions and declarations. It
is also possible to define types such as:

TYPE
 T1 = ARRAY(1..100] OF ^T1;
 T2 = ^T2;
 T3 = record
 numero: INTEGER;
 thisrecord: ^T3
 END;

which, though legal, are somewhat difficult to use efficiently.

Pointer variables

A variable of type pointer can be initialized or modified in one of
three ways:

i) it can be assigned the null-value which is denoted by the
reserved word NIL

ii) it can be given a unique identifying-value, which serves as
the address of a variable of the pointer's domain type

iii) it can be assigned the value of another pointer variable,
acquiring the identifying-value of that pointer which may
be NIL

The reserved word NIL represents a null-value unique to pointer
types; it is not available for general purpose inspection. When
Specified for assignment or comparison with a pointer variable, the
token NIL will

-94-

QL Pascal Development Kit Structured types

assume the nil-value appropriate to the pointer variable. A. pointer
variable to which NIL is assigned (a nil-pointer) does not reference
a variable. A pointer variable can be compared to NIL or to another
pointer variable with the same type. Such comparisons can only be
made for equality or inequality (the relational operators = or < >).

e.g.

PROGRAM PointerSyntax(output);

TYPE
 num1 = REAL;
 num2 = RECORD
 Int1 : INTEGER;
 Int2 : INTEGER
 END;
 ptype1 = ^num1,;
 ptype2 = ^num2;

VAR

 pointer1 : ptype1;
 pointer2 : ptype2;
 pointer3 : ptype2;

BEGIN
 pointer1 := NIL;
 pointer2 := NIL;
 pointer3 := pointer2;
IF (pointer2 <> pointer3) OR (pointer1 = NIL) THEN
 WRITELN('pointer comparisons');

END.

-95-

QL Pascal Development Kit Structured types

7.4.2 NEW

The predefined procedure NEW can be invoked to dynamically allocate a
new variable.

NEW(p)

creates a totally undefined variable of p's domain type, p being a
variable access of any pointer type. p is said to reference this
variable.

The new variable is not directly known from within an executing
program and remains allocated for the duration of program execution,
even if the variable allocation is initiated from within a nested
Subprogram block. Thus it may be necessary to reclaim the storage
used by a dynamic variable and this is done by invoking the
predefined procedure DISPOSE.

The full form of the procedure NEW is:

NEW(p,[<case-constant>{","<case-constant>}])

where <case-constant> is a case constant of the variant part of a
record variable access by pointer p. This form allows for more
efficient storage allocation for variant records where the actual
size of each record can vary depending upon which variant record
grouping is currently active. The actual size required may be
allocated but care must be taken to ensure that, when the storage is
ready for release, the precise storage allocated is deallocated; that
is, DISPOSE must be invoked using the same case constant List. It is
an error if the case constant List is not identical. If a variable is
created using the second form of NEW it is an error to deallocate it
using the first (short) form of DISPOSE. See Appendix C.

If more than one case constant is specified, then the sequence and
occurrence of the case constants must correspond exactly to the full
or partial variant part definition from which they are derived. It is
an error if a variant that was not specified becomes active. It is an
error if a variable created by the second for of NEW is accessed by
the identifier-variable of the variable-access of a factor, of an
assignment statement, or of an actual-parameter. See Appendix C.

-96-

QL Pascal Development Kit Structured types

7.4.3 DISPOSE

The predefined procedure DISPOSE can be invoked to de-allocate
variables created by a previous invocation of NEW.

DISPOSE(q)

serves to disassociate the variable referenced by q from any pointer,
q being a variable or function of any pointer type. It is an error if
a subsequent attempt is made to access the variable through q, or
through any other pointer, since they have become undefined. See
Appendix C.

It is an error to dispose of a variable that is currently being
accessed or to attempt to dispose of an undefined or null-valued
pointer. The full form of the procedure DISPOSE is:

DISPOSE(q,[<case-constant>{","<case-constant>})

where <case-constant > is a case constant of the variant part of a
record variable access by pointer q. This form allows for more
efficient storage de-allocation for variant records where the actual
size of each record can vary depending upon which variant record
grouping is currently active. The case constant list in DISPOSE must
be identical to the case constant list in the corresponding previous
invocation of NEW. It is an error if the case constant list is not
identical. See Appendix C. The storage released by an invocation of
DISPOSE is 'given back' to the machine perhaps for re-use by further
invocations of NEW.

e.g.

NEW(item);
{allocate storage for a variable pointed to}

DISPOSE(item);
{de-allocate the storage for the variable}

-97-

QL Pascal Development Kit Structured types

Identified variables

As dynamically allocated variables do not have identifiers, they are
referenced through the use of identified variables:

<identified-variables> = <pointer-variable>("^"|"@")

Put succinctly, an identified variable is that which is pointed at.
It is an error if <pointer-variable > is NIL or undefined. See
Appendix C.

Even though a function identifier may be of type pointer i.e. the
function's result type, a function invocation cannot be used to
construct an identified variable. It follows from a pointer type
definition that an identified variable may be of any type. The
following is an example of the use of pointers to establish a linked
List:

Figure 2

item
5

item
4

item
3

item
2

item
1

first Linked list (with n=5)

-98-

QL Pascal Development Kit Structured types

PROGRAM LinkedList (output);
TYPE
 Link = ^Info;
 Pieceofinfo = RECORD
 .
 .
 .
 NextInfo : Link
 END;
VAR
 Linkdata = RECORD
 .
 .
 .
 END;
 F : File of Linkdata;
 Filepiece : Linkdata;
 First, InfoPointer : Link;
BEGIN
 .
 .
 .
 First := NIL;
 FOR i:= 1 To n DO
 {n pieces of information in file 'F'}
BEGIN
 READ(F, filepiece);
 {get next piece of info}

 NEW(InfoPointer);
 {allocate storage for list item}

 InfoPointer’.NextInfo := First;
 {point to previous item}

 First := InfoPointer;
 {store current pointer}
 END
END.

Typically pointers are associated with identified variables of type
record, as in the previous example of the linked list.

-99-

QL Pascal Development Kit Structured types

7.5.1 File type

Apart from file types all other structured data types in QL Pascal
68000 are fixed by their definitions and declarations. File variables
can be declared that are sequences of components. The size of a file
variable can change during program execution and a file variable can
exist outside a program. A new file may be generated by a program, or
an existing file may be inspected by a program. Distinct from other
structured data types (excluding dynamic data structures) files are
sequential access data structures.

Files may be sequences of any data type except file types themselves
or structured types that contain file type components:

<file-type> = FILE OF <component-type>

<component-type> may be an already defined data type or a new data
type definition.

Space for file variables is generally allocated on rotating media
devices which have long access times compared to main memory
Therefore to optimize processor throughput, main memory storage
buffers are set up to contain the current 'file piece'. Such buffers
may hold more than one file component and in order to access the
current component, a buffer variable is provided to represent a
Single file component. The buffer variable is automatically allocated
in conjunction with the declaration of a file variable:

<buffer-variable> = <file-variable>("*"|"@")

where <file-variable > represents a file variable access.

A buffer variable can be regarded as a 'window' that contains the
current file component, through which a program can inspect a file or
into which a program can generate a new component. It is an error to
change the value of a file when a reference to its buffer exists.

The predefined QL Pascal 68000 type TEXT is essentially file of char
with the addition of lines as an extra sequence type (see section
7.6)

-100-

QL Pascal Development Kit Structured types

7.5.2 File handling procedures

There is a number of predefined procedures and functions in QL

Pascal, which relate to files in general and are detailed as follows
for file f:

REWRITE(f) This procedure statement puts f in generation mode.
File f becomes empty and the buffer variable becomes
undefined.

RESET(f) This procedure statement puts f in inspection mode.
After the call of reset, the buffer variable f^
represents the first component in the file. It is an
error if file f is undefined before the call of
RESET.

PUT(f) This procedure statement appends the buffer variable
f^ to f which must be in generation mode. It is an
error if f is not in generation mode or if the buffer
variable f^ is undefined or if f% is not put on the
end of the file f. After a call of put, the buffer
variable becomes totally undefined. (the 'window'
contents are added to the end of the file)

GET(f) f^ to represent the next component in file f which
must be in inspection mode. It is an error if file f
is not in inspection mode. It is also an error if
before the call of get there is no next component,
that is, EOF(f) is true (at end of file). (the
''window' is advanced to inspect the next file
component)

EOF(f) This function call yields Boolean value true if the
component represented by f^ is empty. It is an error
to call EOF(f) if f is undefined.

-101-

QL Pascal Development Kit Structured types

7.5.3 READ and WRITE

These have the form:

READ" ("[<file>", "]<variable>{", "<variable>}")"
WRITE" ("{<file>", "]<variable>{", "<variable>}")"

<variable> is a variable declared using the same type as <file>
component type. READ and WRITE can be used in place of GET and PUT,
without the need to refer to file buffer variables. If <file> is not
Specified, READ refers to the text-file INPUT and WRITE refers to the
text-file OUTPUT (see section 7.6). Note that <file> is evaluated
once regardless of the number of variables specified (See Appendix
C).

The following is the file transfer program of the previous example
using READ and WRITE in place of GET and PUT:

PROGRAM Transfer (output, FileIn, FileOut);
 {both files are external}

TYPE
 ARec = RECORD
 Field1: INTEGER;
 .
 .
 .
 Fieldn: CHAR
 END;
 AFile = FILE OF ARec;

VAR
 Filein : AFile;
 Fileout : AFile;
 Temp : Arec;

BEGIN
 RESET(Filein); {input file in inspection mode}

 REWRITE(Fileout); {output file in generation mode}

 WHILE NOT EOF(Filein) DO
 BEGIN
 READ(Filein, Temp) ;
 WRITE(Fileout , Temp)
 END;
END.

-102-

QL Pascal Development Kit Structured types

NOTE RESET and REWRITE have been extended to allow internal files to
access named files.

 RESET "(""" <file> "," <file-name> ")"

 REWRITE "(" <file> "," <file-name> ")"

in the case of RESET, <file-name > is the name of an existing file
and in the case of REWRITE, <file-name> is the name of a file to be
created. (See Appendix D).

7.6 INPUT / OUTPUT facilities

This section deals with the standard procedures that apply to text-
files.

INPUT and OUTPUT

These program parameters, which relate to the keyboard and console,
are treated as text-files. When specified, explicit definitions and
declarations of these text-files are not required and upon program
execution these input and output devices are ready for use. RESET or
REWRITE must not be called for INPUT and OUTPUT.

Text-files are sequences of char values. Text is line oriented, Lines
being terminated by an 'end of line' character.

-103-

QL Pascal Development Kit Structured types

EOLN

when accessing text-file f, EOLN(f) returns TRUE, if the buffer
variable f^ (the current character) is the end of line character,
otherwise FALSE. It is an error if f is undefined or EOF(f) is TRUE.
If no file is specified, EOLN refers to file INPUT.

READLN

When accessing text-file f, READLN(f) positions the buffer variable
f^ immediately after the end of line character of the current line,
that is, at the first character of the next Line. It is an error to
call READLN(P) if EOF(f) is true. If no file is specified, READLN
refers to INPUT.

WRITELN

When generating text-file f, WRITELN(f) appends an end of line
character to f. It is an error if f is undefined. After the WRITELN
call the buffer variable f^ is undefined and f remains in the
generation mode. If no file is specified, WRITELN refers to OUTPUT.

PAGE

When generating text-file f, PAGE(f) appends a 'page-throw' character
to f. If no file is specified, PAGE refers to OUTPUT. If page is used
to write to a file then the effect of reading from that file is to
read the form feed character.

General

GET and PUT may be applied to text-files but are cumbersome. READ,
READLN, WRITE and WRITELN are almost universally applied for text-
file access. Multiple arguments, as in READ and WRITE, can be
Specified in READLN or WRITELN calls:

-104-

QL Pascal Development Kit Structured types

Syntax:

READ"("[<file>", "]<variable> {", "<variable>}")"

READLN["("(<file> | <variable>) {","<variable>}")"]

WRITE"("(<file>", "]<write-~parameter>
 {","<write-parameter>}")"

WRITELN["("(<file> | <write-parameter>)
 {","<write-parameter>}")"]

<variable> can be of type real, integer or char. Thus READ and READLN
will read numeric literals (see section 3.2) as a sequence of
characters, starting with the first non-blank character and ending
with the first non-digit. If valid, the character sequence is
converted to the relevant numeric type of <variable>, It is an error
if the character sequence starts with a character not consistent with
a numeric Literal.

<write-parameter> is an expression which can incorporate formatting
details. (See WRITE and WRITELN output formatting in Appendix E).

-105-

QL Pascal Development Kit Pascal syntax

Appendix A Pascal syntax quick reference guide

A Pascal program has the following basic outline:

{program heading}
PROGRAM <heading>

{GOTO label declarations}
LABEL 1,9999;

{constant definitions}
CONST <identifier> = <literal>;

{type definitions}
TYPE <identifier> = <type>;

{variable declarations}
VAR <identifier(s)> : <type>;

{subprogram declarations}
PROCEDURE or FUNCTION <heading>;

BEGIN

{program statements}
 .
 .
END.

A-1

QL Pascal Development Kit Pascal syntax

Type definitions

Predefined types:

INTEGER BOOLEAN CHAR REAL

Enumerated types:

TYPE colours = (red, blue, green,yellow);

Subrange types:

TYPE SomeIntegers = 10..100;

 SomeColours red..green;

Set types:

TYPE NumberSet = SET OF 1..100;

 ColourSetr = SET OF SomeColours;

Array types:

TYPE AnArray = ARRAY [1..40,char] OF red..green;

 Paintbox = PACKED ARRAY [colours] OF BOOLEAN;

A-2

QL Pascal Development Kit Pascal syntax

Record types:

TYPE ARecord = RECORD
 {There are 4 fixed fields...}
 Field1 : INTEGER;
 Field2 : 'at'..'m';
 Field3 : (white, grey, black);
 RECORD
 .
 .
 .
 END;
 Field4 : ARRAY [1..4] OF 'a'..'d';
 {...and one variant field}
 CASE ATag = ATagType OF
 Select1 : (Field5 : REAL);
 Select2 : (Field6 : BOOLEAN);
 END;

File types:

TYPE Collection = FILE OF ARecord;

 Somenums = FILE OF INTEGER;

Pointer types:

TYPE Location = "^ARecord;

A-3

QL Pascal Development Kit Pascal syntax

Variable declarations

VAR 1,num,digits : INTEGER;

 SomeInfo : ARecord;

Procedure and Function declarations

As for the program block, except for the heading and ending with a
with a ";":

PROCEDURE ASubroutine (i : INTEGER; VAR n : REAL);
VAR j,k : INTEGER;
BEGIN
 .
 . {procedure statements}
 .
END;

FUNCTION ASubroutine : REAL;
VAR i,j,k : INTEGER;
BEGIN
 .
 . {function statements}
 .
 ASubroutine := 5.0
END;

A-4

QL Pascal Development Kit Pascal syntax

Statements

Assignment statements:

Answer := Result;

Answer := a * b / c + d;

ASet := [1, 2, 3, x..y, 7];

Goto statements:

GOTO 2;

2: x:=y; {target}

If statements:

IF (Answer = 5) OR (Result <> 7) THEN
 BEGIN
 .
 . {statements}
 .
 END
ELSE
 BEGIN
 .
 . {statements}
 .
END;

A-5

QL Pascal Development Kit Pascal syntax

For statements:

FOR i := 10 TO 20 DO (or FOR i := 20 DOWNTO 10 DO)
 BEGIN
 .
 . {statements}
 .
 END;

While statements:

WHILE NOT (Answer > 5) AND (RESULT < 12) DO
 BEGIN
 .
 . {statements}
 .
END;

Repeat statements:

REPEAT
 .
 . {statements}
 .
UNTIL (Answer <=5) OR (RESULT >=17);

A-6

QL Pascal Development Kit Pascal syntax

Case statements:

CASE Answer OF
 1,2 : BEGIN
 .
 .
 .
 END;
 5 : <statement>
END;

With statements:

WITH ARecord DO
 BEGIN
 Field := 5;
 .
 .
 .
 END;

Arithmetic expressions:

Num1 + Num2
Num1 - Num2
Num1 * Num2
Num1 / Num2
Num1 DIV Num2 { integers only }
Num1 MOD Num2 { " " }

A-7

OL Pascal Development Kit Compile-time error messages

Appendix B: Compile-time error messages

1: Illegal character
2: Illegal character
3: File ends inside quoted string
4: File ends inside a comment
5: Integer part of number is too Large
6: PROGRAM expected
7: Identifier expected
8: ')' expected
9: '?' expected
10: A block cannot start with this symbol
11: Missing dot at end of program
12: Text encountered after end of program
13: BEGIN expected
14: A procedure has been declared as forward but has not been found
15: Syntax error
16: A label must be an INTEGER constant
17: Label number expected
18: '=' expected
19: Type has been implicitly declared, but actual definition not

found
20: ':' expected
21: Undeclared Label
22: This kind of identifier cannot be used to start a statement
23: Type expected
24: 'OF' expected
25: '(' expected
26: Line too long, it will be truncated
27: Only two digits are permitted in the E field of a real number
28: Commas must be used between labels
29: Unexpected end of source file encountered
30: A type identifier must follow '*'
31: 'T' expected
32: 'Y' expected
33: Files cannot contain files
34: END expected
35: ',' expected

B-1

OL Pascal Development Kit Compile-time error messages

36: Type mismatch between subrange bounds
37: The first bound of the subrange is greater than the second
38: Illegal subrange type
39: Constant expected
40: Number expected
41: Type identifier expected
42: Identifier already declared in this block
43: Identifier not declared
44: Too many elements in type
45: Type is not countable
46: Constant must be of another type
47: Block name expected
48: The previous forward declaration does not agree
49: The parameter list should not be repeated
50: This block has been declared as forward for the second time
51: Parameter expected '
52: Function return type must be pointer, subrange, real or ordinal
53: Maximum code size for main procedure exceeded
54: ',' expected
55: Cannot READ or WRITE zero items
56: A field width must be of type integer
57: Expression cannot be written
58: The '=' and'< >' operators cannot be used between these types
59: An expression of type PACKED ARRAY OF CHAR required
60: The IN operator cannot be used between these types
61: The '+' and '''-' operators can only be used on integer and

real types
62: The OR and AND operators can only be used between boolean

operands
63: The '+' and '-' operators cannot be used between these operands
64: Unable to reopen file for updating
65: Unimplemented feature
66: The MOD and DIV operators may only be used between integer

operands
67: The '*' operator may not be used between these operands
68: Invalid operand
69: The NOT operator can only be applied to boolean operands
70: The '*' symbol may only be used for pointer and file variables
71: Internal compiler error
72: A dot follows a variable which is not a record
73: Field not known
74: Only arrays may be subscripted

B-2

OL Pascal Development Kit Compile-time error messages

75: The expression type is incompatible with the index type of this
array

76: '=' expected
77: Variable and expression are not assignment compatible
78: Expression too complex
79: DO expected
80: UNTIL expected
81: THEN expected
82: The variable of a for loop must be a local variable
83: The variable of a for loop must be of an ordinal type
84: TO or DOWNTO expected
85: Subscript value out of bounds
86: Division by zero
87: Case label expected
88: Empty case statement body
89: The case constant appears twice
90: Parameter list expected
91: Number of parameters does not agree with declaration
92: Extra comma, it will be ignored
93: Variable of different type required
94: An element of a packed structure cannot be used as a VAR

parameter
95: Procedural parameter is not identical to the requirements of

the parameter list
96: Expression of different type required
97: The argument to NEW or DISPOSE must be a pointer
98: Only the current function may be assigned to
99: A boolean expression is required
100: The empty string is not permitted
101: Label already defined
102: Label has been declared but not defined
103: Label already declared
104: Placement of Label invalidates previous GOTO statement
105: Label numbers must be in the range © to 9999
106: Label is not accessible from this point in the program
107: The identifier cannot be redefined in this scope
108: External procedures may only be declared at the outermost LeveL
109: RESET and REWRITE may only be applied to files
110: RESET and REWRITE may not be used on the standard files input

and output
111: READLN, WRITELN and PAGE may only be applied to text-files

B-3

OL Pascal Development Kit Compile-time error messages

112: Cannot write to input or read from output
113: Record type required
114: A file is required here
115: Items within a set constructor must have identical types
116: Not enough space - try increasing workspace size
117: The MOD operator must have a positive, non zero, argument
118: Unimplemented instruction
119: Parameter should be of type unpacked array
120: Parameter should be of type PACKED array
121: Subscript parameter is incompatible with the subrange of the

unpacked array parameter
122: Array host types are not identical
123: Same control variable in nested for statements
124: Cannot assign to a for statement control variable
125: Cannot pass a for statement control variable as a variable

parameter to a subprogram
126: Cannot call READ or READLN with a for statement control

variable as parameter
127: For statement control variable is threatened by a procedure or

function
128: The argument to DISPOSE must be a variable or function of type

pointer
129: The argument to INCLUDE must be a filename in quotes
130: Unable to open INCLUDE file for input
131: INCLUDE cannot be nested to this depth
132: Too many case constants supplied
133: Case constants can not be variables
134: This case constant does not match any of the variants
135: This case constant is type incompatible with the corresponding

variant
136: A string can not be on more than one Line
137: The '/' operator may not be used between operands of these

types
138: The left-hand argument of the 'IN' operator must be ordinal
139: File variables or structured variables with file components

cannot be value parameters
140: The case index must be an expression of ordinal type
141: Field width must be an expression of ordinal type
142: This function does not contain an assignment to its identifier
143: Files and structured types containing files can not be assigned
144: The actual parameter corresponding to a variable parameter must

be a variable access

B-4

OL Pascal Development Kit Compile-time error messages

145: A pointer variable must be a variable access
146: The case constant list is incomplete
147: This parameter cannot denote a field that is the selector of a

records variant part
148: The applied occurrence of the type identifier is within the

scope of the field designator of the same name
149: This case constant can never be reached
150: Only integer, real or character values can be read from a text-

file
151: Variables in set constructors must be in the range 0..255
152: Possible unclosed comment
153: Program parameters can only be defined as variables
154: Drive full

B-5

OL Pascal Development Kit Collected errors

Appendix C: Collected errors

The following is a list of collected errors. They are all trapped by
the QL Pascal run-time system with the exception of those marked by
an asterisk (*). These errors mainly involve undefined variables or
dynamic storage.

Array Types and Packing

1. It is an error if the value of any subscript of an indexed-
variable is not assignment-compatible with its corresponding
index-type.

2. In a call of the form PACK (Vunpacked, StartingSubscript,
Vpacked), it is an error if the ordinal-typed actual parameter
(StartingSubscript) is not assignment-compatible with the index-
type of the unpacked array parameter (Vunpacked).

3*. In a call of the form PACK (Vunpacked, StartingSubscript,
Vpacked), it is an error to access any undefined component of
Vunpacked.

4. In a call of the form' PACK (Vpacked, StartingSubscript,
Vpacked), it is an error to exceed the index-type of Vunpacked.

5. In a call of the form UNPACK' (Vpacked, Vunpacked,
StartingSubscript), it is an error if the ordinal-typed actual
parameter (StartingSubscript) is not assignment compatible with
the index-type of the unpacked array parameter (Vunpacked).

6*. In a call of the form UNPACK' (Vpacked, Vunpacked,
StartingSubscript), it is an error for any component of Vpacked
to be undefined.

7. In a call of the form UNPACK' (Vpacked, Vunpacked,
StartingSubscript), it iS an error to exceed the index-type of
Vunpacked.

C-1

OL Pascal Development Kit Collected errors

Record Types

8*. It is an error to access or reference any component of a record
variant that is not active.

9. It is an error if any constant of the tag-type of a variant-part
does not appear in a case-constant- list.

10. It is an error to pass the tag field of a variant-part as the
argument of a variable-parameter.

11*.It is an error if a record that has been dynamically allocated
through a call of the form NEW (p,C1...,Cn) is accessed by the
identified-variable of the variable-access of a factor, of an
assignment statement, or of an actual parameter.

File Types, Input and Output

12*.It is an error to change the value of a file variable f when a
reference to it's buffer, buffer variable f, exists.

13. It is an error if, immediately prior to a call of PUT, WRITE,
WRITELN or PAGE, the file affected is not in the 'generation'
state.

14. It is an error if, immediately prior to a call of PUT, WRITE,
WRITELN or PAGE, the file affected is undefined.

15. It is an error if, immediately prior to a call of PUT,
WRITE,WRITELN or PAGE, the file affected is not at end of file.

16. It is an error if the buffer variable is undefined immediately
prior to the use of PUT.

17. It is an error if the affected file is undefined immediately
prior to any use of RESET.

18. It is an error if, immediately prior to use of GET or READ, the
file affected is not in the 'inspection' state.

C-2

OL Pascal Development Kit Collected errors

19. It is an error if, immediately prior to use of GET or READ, the
file affected is undefined.

20. It is an error if, immediately prior to use of GET or READ, the
file affected is at end-of-file.

21. It is an error if, in a call of READ, the type of the variable-
access is not assignment compatible with the type of the value
READ (and represented by the affected file's buffer-variable)

22. It is an error if, in a call of WRITE, the type of the expression
is not assignment compatible with the type of the affected file's
buffer-variable.

23. In a call of the form EOF(f), it is an error for f to be
undefined.

24. In any call of the form EOLN(f), it 1s an error for f to be
undefined.

25. In any call of the form EOLN(O), it is an error for EOF(f) to be
true.

26. when reading an integer from a text-file, it is an error if the
input sequence (after any leading blanks or end-of-lines are
skipped) does not form a signed-integer.

27. When an integer is read from a text-file, it is an error if it is
not assignment compatible with the variable-access it is being
attributed to.

28. when reading a number from a text-file, it is an error if the
input sequence (after any leading blanks or end-of-lines are
skipped) does not form a signed-number.

29. It 1i an error if the appropriate buffer variable is undefined
immediately prior to any use of READ.

30. In writing to a text-file, it is an error if the value TotalWidth
or FractionalDigits, if used, is less than one.

C-3

OL Pascal Development Kit Collected errors

Pointer Types

31. It is an error to try to access a variable through a NIL-valued
pointer.

32*. It is an error to try to access a variable through an undefined
pointer.

Dynamic Allocation

33*.It is an error to try to dispose of a dynamically-allocated
variable when a reference to it exists.

34*.When a record with a variant part is dynamically allocated
through a call of the form NEW (p,Ci...,) Cn, it is an error to
activate a variant that was not specified (unless it's at a
deeper level than Cn).

35*.It is an error to use the short form of DISPOSE (e.g., DISPOSE
(p)) to deallocate a variable that was allocated using the long
form (e.g., NEW (p,C1,...,Cn)).

36*.When a record with a variant part is dynamically allocated
through a call of the form NEW (p,C1...,) Cn, it is an error to
specify a different number of variants in a call of DISPOSE.

37*.When a record with a variant part is dynamically allocated
through a call of the form NEW (p,C1...,) Cn, it is an error to
specify a different number of variants in a call of DISPOSE.

38. It is an error to call DISPOSE with a NIL-valued pointer
argument.

39. It is an error to call DISPOSE with an undefined pointer
argument.

Required Functions and Arithmetic

40*. For a call of the SQR function, it is an error if the result
does not exist.

41. In a call of the form LN (x), it is an error for x to be less
than or equal to zero.

C-4

OL Pascal Development Kit Collected errors

42. In a call of the form SQRT (x), it is an error for x to be
negative.

43. For a call of the function TRUNC, it is an error if the result is
not in the range -MAXINT. .MAXINT.

44. For a call of the function ROUND, it is an error if the result is
not in the range -MAXINT. .MAXINT.

45. For a call of the function CHR, it is an error if the result does
not exist.

46. For a call of the function SUCC, it is an error if the result
does not exist.

47. For a call of the function PRED, it is an error if the result
does not exist.

48. In a term of the form x/y, it is an error for y to equal zero.

49. In a term of the form i DIV j, it is an error for j to equal
zero.

50. In a term of the form i MOD j, it is an error if j is zero or
negative.

51. It is an error if any integer arithmetic operation, or function
whose result type is integer, is not computed according to the
mathematical rules for integer arithmetic.

Parameters

52. It is an error if an ordinal-typed value-parameter and it's
actual-parameter are not assignment compatible.

53. It is an error if a set-typed value-parameter and it's actual-
parameter are not assignment compatible.

C-5

OL Pascal Development Kit Collected errors

Miscellaneous

54* It is an error for a variable-access contained by an expression
to be undefined.

55*. It is an error for the result of a function call to be
undefined.

56. It is an error if a value and the ordinal-typed variable, or
function-designator it is assigned to, are not assignment-
compatible.

57. It is an error if a set-typed variable, and the value assigned
to it, are not assignment compatible.

58. On entry to a case-statement, it is an error if the value of
the case-index does not appear in a case-constant- list.

59. If a for-statement is executed, it is an error if the types of
the control-variable and the initial-value are not assignment-
compatible.

60. If a for-statement is executed, it is an error if the types of
the control-variable and the final-value are not assignment-
compatible.

C-6

OL Pascal Development Kit Collected errors

Order of Evaluation:

The order of evaluation of

a. the indices of multidimensional arrays

b. the constituent members of set-constructors

c. member-designators in set-constructors

d. actual parameters in function and procedure calls

e. either side of assignment statements

f. the parameters of PACK and UNPACK

is generally left to right although the order may depend upon
optimisation features of the compiler.

In Boolean expressions not all of the operands may need to be
evaluated. Thus if operands have side-effects (e.g. function calls)
the results may not be predictable.

C-7

QL Pascal Development Kit Extensions to the ISO standard

Appendix D: Extensions to the ISO Standard

The following extensions to the ISO standard can only be used when
EXTEND is specified as a compile time option (see Foreword).

RESET and REWRITE

These two predefined procedures have been extended to allow internal
files to access named files.

RESET "(" <file> "," <file-name> ")"

REWRITE "(" <file> "," <file-name> ")"

In the case of RESET, <file-name> is the name of an existing file and
in the case of REWRITE, <file-name > is the name of the file to be
created.

<file-name> is the name of the file as understood by the local
operating system. It is specified using a string Literal or by using
a variable of type packed array of char containing <file-name>. The
string (or the array) may contain leading and/or trailing spaces
which will be ignored.

INCLUDE

This predefined directive allows additional program fragments to be
included in the source program at compile time. The format is

INCLUDE <file-name>

<file-name> is the name of the file as understood by the local
operating system and must be specified using a string literal. An
error will occur if the include file cannot be opened. INCLUDE may be
nested to a depth of three and it is an error to exceed this.

D-1

QL Pascal Development Kit Extensions to the ISO standard

EXTERNAL

This directive can be specified in the declaration of a function or
procedure in the main program. It allows a subprogram to be declared
as 'external’ and to be defined elsewhere. The subprogram identifier
and its formal parameter list (and the result type if it is a
function) are specified followed by the reserved word EXTERNAL and a
unique number.

PROGRAM EgExternal;
.
.
.
PROCEDURE ext1 (x,y,Z : INTEGER); EXTERNAL 175;
.
.
.
FUNCTION ext2 (a : BOOLEAN) : REAL ; EXTERNAL 176;
.
.
.
BEGIN

 { Calls to procedure ext1 and function ext2 are
 valid anywhere within the main program block. }

END.

This extension allows users with Metacomco's BCPL compiler (or
assembler) to write BCPL (or BCPL look-alike) programs which may be
linked with a Pascal program. The external number is the BCPL global
number and should be in the range 175 to 200. See your BCPL
Development Kit manual for more details.

QTRAP

This predefined procedure allows QDOS traps to be called from Pascal.
The routine has the following format,

 QTRAP "(" <trap-number> "," <in-structure> ","
 <out-structure> ")"

D-2

QL Pascal Development Kit Extensions to the ISO standard

The first argument, <trap-number>, is the QDOS trap number (1, 2 or
3) and must be of type integer. The second argument, <in-structure>,
allows the data registers D0, D1, D2 and D3 and the address registers
A0, A1, A2 and A3 to be set-up with the relevant call parameters.
This argument must be of type record as follows;

RECORD
 D0 : INTEGER;
 D1 : <type>;
 D2 : <type>;
 D3 : <type>;
 A0 : <type>,;
 A1 : <type>;
 A2 : <type>;
 A3 : <type>;
END

The required QDOS trap function is selected by the value in the field
D0. This field must be of type integer. The other fields should have
types compatible with the data to be passed to the trap. The fields
corresponding to registers that are not used by the trap should be of
type integer.

Information is returned to Pascal via the third argument, <out-
structure>. This is similar to <in-structure> above and the types of
each field should be compatible with the return parameters. The QDOS
error return is passed back in the DO field so this field must be of
type integer.

CHANNELID

Many of the QDOS traps that can be called with the QTRAP procedure
require the channel ID to be specified (typically in address register
A0). This procedure allows easy access to this information. The
format is as follows;

CHANNELID "(" <file> "," <channel> ")"

The first argument must be a previously defined file variable and the
second argument must be a variable of type integer. After the call,
this variable contains the channel ID if the file was open or zero
otherwise.

D-3

QL Pascal Development Kit Extensions to the ISO standard

The Graphics Include File

On the supplied microdrive cartridge "B' you will find a file called
'graphics_INC'. This is an include file containing a set of external
function and procedure declarations which allow many useful routines
to be called from Pascal. To use this file, it should be included in
your main program as follows;

INCLUDE 'mdv1_graphics_INC';

Note that if you using an expanded (128K) QL then you may find it
necessary to reduce the code in the include file to just those
routines that will be called. The routines in this file are:

i) Random

FUNCTION random
(seed : INTEGER) : INTEGER;

this routine returns the next psuedo random number from a sequence
identified by the argument seed. If the result of the previous call
to random is used as the seed for the next call, the sequence will
not repeat until all possible numbers have been generated.

ii) Time

FUNCTION time : INTEGER;

when a Pascal program is started the current value of the clock is
stored. A call to time will return the difference between the new
current time and the initial time. The result is in seconds.

iii) Timeofday

PROCEDURE timeofday
(VAR hh, mm; ss : INTEGER);

This procedure returns the current time (assuming that this has been
set correctly when the machine was first started). The time is
returned in the three integer arguments passed to the procedure.

D-4

QL Pascal Development Kit Extensions to the ISO standard

iv) Strtimeofday

PROCEDURE strtimeofday
(VAR h1,h2,colon1,m1,m2,colon2,$s1,s2 ;:
CHAR);

This procedure returns the current time (assuming that this has been
set correctly when the machine was first started). The time is
returned in the eight character arguments passed to the procedure.
The hour is passed back in the first and second arguments, the
minutes in the fourth and fifth and the seconds in the seventh and
eighth. The third and sixth arguments are passed back as colons for
convenience.

v) Date

PROCEDURE date
(VAR year, month, day : INTEGER);

This procedure returns the current date (assuming that this has been
set correctly when the machine was first started). The numeric date
is returned in the three integer arguments passed to the procedure.

vi) Strdate

PROCEDURE strdate
(VAR y1,y2,y3,y4,space1,m1,m2,m3,space2,d1,d2 : CHAR);

This procedure returns the current date (assuming that this has been
set correctly when the machine was first started). The date is
returned in the eleven character arguments passed to the procedure.
The year is passed back in the first four arguments, the month in the
sixth, seventh and eighth and the date in the tenth and eleventh. The
fifth and ninth arguments are passed back as spaces for convenience.

D-5

QL Pascal Development Kit Extensions to the ISO standard

vii) Screen

FUNCTION screen1
(code : INTEGER) : INTEGER;

FUNCTION screen2
(code, arg1 : INTEGER) : INTEGER;

FUNCTION screen3
(code, arg1`, arg2 : INTEGER) : INTEGER;

The screen functions are generalised operations for handling the QL
screen. The type of operation is determined by the code. Many
operations require no further arguments, some require one, a few
require two. The number of the screen function refers to the number
of parameters it requires. All three functions return an error code
which will be zero if all went well and a negative QDOS error code
otherwise.

The codes have been given to suitable Pascal constants which are
defined in the supplied include file 'mdv1_graphics_codes_INC'.

screen3 (Screen.Border, colour, width)

Set window border to the specified colour and width. The border is
inside the window limits and is doubled on the vertical edges.

screen1 (Screen.Cursor)

Enable the cursor. It is automatically enabled when a buffered read
from the screen is pending. Without an enabled cursor in a window
CTRL/C cannot be used to switch to the new job, even if an unbuffered
read is in operation.

screen1 (Screen.Nocursor)

Disable the cursor.

screen3 (Screen.At, column, row)

Position the cursor at the specified row and column, using character
coordinates.

D-6

QL Pascal Development Kit Extensions to the ISO standard

screen3 (Screen.Atp, x, y)

Position the cursor at the specified point, using pixel coordinates.
The position refers to the top left corner of the next character
rectangle relative to the top Left corner of the window.

screen2 (Screen.Tab, column)

Tab to column specified.

screen1 (Screen.NewLline)
screen1 (Screen.Left)
screen1 (Screen.Right)
screen1 (Screen.Up)
screen1 (Screen.Down)

Move the cursor to the start of the next line, or one space in the
relevant direction.

screen2 (Screen.Scroll, dist)
screen2 (Screen.Scroll.top, dist)
screen2 (Screen.Scroll.bottom, dist)

Scroll all the screen, that part above the cursor line or that part
below the cursor line the specified distance in pixels. A positive
value for dist will move the screen down while a negative distance
scrolls it up. Blank space is filled with the current paper colour.

screen2 (Screen.Pan, dist)
screen2 (Screen.Pan.line, dist)
screen2 (Screen.Pan.EOL, dist)

Pan all of the screen, the current cursor line or the right hand end
of the cursor line the specified distance in pixels. The right hand
end starts at the current cursor column. A positive value for dist
will move the Lines to the right while a negative value moves it to
the left. Blank space is filled with the current paper colour.

D-7

QL Pascal Development Kit Extensions to the ISO standard

screen1 (Screen.Clear)
screen1 (Screen.Clear.top)
screen1 (Screen.Clear.bottom)
screen1 (Screen.Clear.line)
screen1 (Screen.Clear.EOL)

Clear the screen, or part of it, to the current paper colour. Part
screens are defined as in scroll and pan above.

screen2 (Screen.Paper, colour)
screen2 (Screen.Strip, colour)
screen2 (Screen.Ink, colour)

Set the paper, strip or ink to the specified colour.

screen2 (Screen.Flash, switch)
screen2 (Screen.Underline, switch)
screen2 (Screen.Fill, switch)

Sets flashing, underlining or screen fill mode on or off. If Switch
is 0 then it is turned off, if it is 1 then it is turned on.

screen2 (Screen.Mode, mode)

Sets the screen printing mode. If mode is -1 then ink is exclusive
ORed into the background. If mode is © the character background is
the current strip colour, and if it is 1 then the background is
transparent. For the Latter two values plotting will be done in the
current ink colour.

screen3 (Screen.Size, width, height)

Sets the size of characters. Width is a number in the range 0 to 3
and indicates widths of 6, 8, 12 or 16 pixels. Height is 0 for 10
pixels and 1 for 20 pixels. In 8 colour mode only 12 or 16 pixel
widths are allowed.

D-8

QL Pascal Development Kit Extensions to the ISO standard

viii) Window

FUNCTION window5
(code : INTEGER; VAR w, h, x, y : INTEGER) :
 INTEGER;

FUNCTION window6
(code : INTEGER; VAR w, h, x, y : INTEGER;
 colour : INTEGER) : INTEGER;

FUNCTION window7
(code : INTEGER; VAR w, h, x, y : INTEGER;
 colour : INTEGER; width : INTEGER) : INTEGER;

The window functions are general purpose routines for manipulating
windows.

The first argument, code, describes the action to be taken. As with
the screen functions, these codes are have been given suitable Pascal
constants defined in the supplied include file:

'mdv1_graphics_codes_INC'.

The next four arguments are used to specify the window; a width, w
and a height, h followed by the x coordinate and the y coordinate (x
being measured to the right and y down from some origin.) Where
appropriate, the next two arguments represent a new colour and border
width, respectively. Colour is used when defining a new window or
filling a block within a window.

window5 (Window.Askp, w, h, x, y)

window5 (Window.Askc, w, h, x, y)

Return the size of the window in w and h and the cursor position
relative to the top left corner in x and y. window.askp returns the
information in pixel coordinates; window.askc returns it in character
coordinates.

window7 (Window.Define, w, h, x, y, colour, width)

Define a new window as specified by w, h, x, y. The size is given in
pixels in w, h and the position, also in pixels, in the x, y refers
to the top left corner of the window relative to the top left of the
screen. Width and colour define the border width (in pixels) and
border colour, respectively.

D-9

QL Pascal Development Kit Extensions to the ISO standard

window7 (Window.Fillblock, w, h, x, y, colour)

Fill a block in a window. The size of the block is given in pixels by
w and h. The top left corner of the block is given in pixels by x and
y The last argument, colour, is only relevant for this call of
window. The block is filled with the specified colour (or stipple)
according to the current overprinting mode.

ix) Plot

FUNCTION plot3
(code : INTEGER; arg1, arg2 : REAL) : INTEGER;

FUNCTION plot4
(code : INTEGER; arg1 arg2, arg3 : REAL) : INTEGER ;

FUNCTION plot5
(code : INTEGER; arg1, arg2, arg3, arg4 : REAL) : INTEGER;

FUNCTION plot6
(code : INTEGER; arg1, arg2, arg3, arg4, arg5 REAL) : INTEGER;

These are generalised graphics routines for plotting lines and arcs
on the screen. They take a code value and up to five real arguments.
The first argument, code, describes the action to be taken. As with
the screen functions, these codes are have been given suitable Pascal
constants defined in the supplied include file:

'mdv1_graphics_codes_INC'.

plot3 (Plot.Point, x, y)

Plot a point at position x,y.

plot5 (Plot.Line, xs, ys, xf, yf)

Plot a line starting at xs,ys and finishing at xf,yf.

plot6 (Plot.Arc, xs, ys, xf, yf, angle)

Plot an arc starting at xs,ys and finishing at xf,yf. The value of
angle indicates the angle subtended by the arc.

D-10

QL Pascal Development Kit Extensions to the ISO standard

plot6 (Plot.ELlipse, x, y, e, r, angle)

Plot an ellipse centred at x,y with eccentricity e and radius r. The
value of angle indicates the rotation angle.

plot4 (Plot.Scale, ly, x, y)

Set the origin as x,y with length of vertical axis ly.

plot5 (Plot.Cursor, yo, xo, y, X)

(Note that the syntax is odd, but the order is correct). Position the
cursor at point (x+xo, y-yo). The values of xo and yo are in pixels
and allow the cursor to be offset from the current graphics point.

x) Recolour

FUNCTION recolour
(c1, c2, c3, c4, c5, c6, c7, C8 : INTEGER) :
 INTEGER ;

The window has each of the colours replaced by an alternative. The
right arguments are the colour numbers in the range 0 - 7
representing the new colour required.

D-11

QL Pascal Development Kit Output formatting

Appendix E: WRITE and WRITELN OUTPUT Formatting

Each expression to be output can have a Totalwidth field associated
with it:

 <write-parameter> = <expression>[":"<totalwidth>]

<totalwidth> is an expression that represents a positive integer
amount and is the number of spaces allocated for outputting the
result of <expression >. The result is right-aligned in the field of
Spaces. It iS an error if <totalwidth> is less than 1. If
<totalwidth> is omitted default values are assumed and are as
follows:

for <expression> result Boolean, <totalwidth> defaults to the
value necessary to output the Boolean values FALSE or TRUE
without leading spaces

for <expression > result char, <totalwidth> defaults to the value
1

for a string Literal, <totalwidth> defaults to the value required
to output the full string without leading spaces

for <expression> result integer, <totalwidth > defaults to value
12

for <expression > result real, <totalwidth> defaults to value 13
(the default output representation for real is that of floating-
point)

Boolean and string-literals

If <totalwidth> is smaller than the size required to output a Boolean
or string literal, then only the first <totalwidth> characters of the
literal are output.

If <totalwidth> is larger than the size required to output a Boolean
or string literal or a character, then the full literal is output
preceded by <totalwidth>-size blanks where, size is the actual size
of the literal.

E-1

QL Pascal Development Kit Output formatting

Integer literals

The sign, if negative, and all significant digits of an integer are
always output - leading zeroes are suppressed. If <totalwidth> is
larger than the field required to fully output an integer literal,
then the literal is preceded by <totalwidth>-size blanks where, size
is the actual size of the full integer literal (with leading zeroes
suppressed). Integer zero is output as 0.

Real number literals

Real number literals can be output in two different ways:

 <real>":"<totaLlwidth>

 <real>":"<totalwidth>":"<fractional-digits>

The first form outputs the literal in floating-point format and the
second form outputs the literal in fixed point format.

Floating-point format

This takes the form:

i) a negative sign if <real> is less than zero; otherwise a
blank

ii) the first non-zero digit of <real>

iii) a decimal point

iv) enough digits of <real>, up to a maximum of 6 for single
precision, to equal <totalwidth>-7

v) 'E' followed by the sign of the exponent followed by 2 digits
for the exponent itself

As floating-point numeric literals cannot be preceded by blanks,
<totalwidth> should be specified accurately otherwise the output
literal may be preceded by spurious least significant digits.

E-2

QL Pascal Development Kit Output formatting

Fixed-point format

This takes the form:

i) <totalwidth> - <actual-characters> blanks if
<totalwidth> is greater than <actual-characters>
where, <actual-characters> = <fractional-digits> +
<number of digits in integral portion of <real>> + 1
If <real> is less than zero, <actual-characters> is further
incremented by 1.

ii) a negative sign if <real > is less than zero.

iii) the integral portion of <real > followed by a decimal point.

iv) <fractional-digits > of the fractional portion of <real>.

Regardless of <totalwidth> a minimum of <actual-characters> is always
printed.

The following are examples of formatted output statements:

 Writeln('CUT OFF':2, 'ACTUAL':6, ' Larger':10)

produces

 CUACTUAL Larger

and

 Writeln(12345678:2,90:15)

produces

 12345678 90

 Writeln(Areal:10) where Areal = 123.456

produces

 1.235E+02

E-3

QL Pascal Development Kit Example Programs

Appendix F: Example Programs

Example 1: Digital Clock

{ This example program produces a movable clock on
 the screen. Use EXEC to run, CTRL-C to get to the
 window, cursor keys to move it where you want and
 <RETURN> to start displaying the time. Originally
 written by Alan Cosslett (MetaComCo) in BCPL,
 rewritten in PASCAL by Peter Carr (MetaComCo)
 May 1985 }

PROGRAM CLOCK (OUTPUT, INPUT);
CONST
 INCLUDE 'MDV2_GRAPHICS_CODES_INC';

CHARSINCLOCK = 8; { i.e., 'hh:mm:ss' }
HEIGHTOFCHAR = 10; { In pixels }
BORDERWIDTH = 1; { In pixels }
DOWN = 216; { Down arrow }
UP = 208; { Up arrow }
LEFT = 192; { Left arrow }
RIGHT = 200; { Right arrow }
ENTER = 10; { Enter to display time }
ERROR = 0; { Can't read keyboard }

VAR

 CHSIZE,ERR,WIDTH, HEIGHT, XCOORD, YCOORD : INTEGER;

INCLUDE 'MDV2_GRAPHICS_INC';

PROCEDURE INITIALISE;
 { This routine works out which mode we are in by
 seeing how many characters wide the default window
 is (this is 37 for TV mode and 74 for monitor mode).
 A window that is big enough to display the clock and
 a white border is then defined. }

F-1

QL Pascal Development Kit Example Programs

BEGIN
 { Make window size enquiry }
 ERR := WINDOWS (WINDOWASKC , WIDTH, HEIGHT, XCOORD, YCOORD) ;

 IF WIDTH > 40
 THEN CHSIZE := 8 { Monitor mode }
 ELSE CHSIZE := 16 { TV mode }

 { Set-up size and position of the inital window }
 WIDTH := CHSIZE* (CHARSINCLOCK+2) + (BORDERWIDTH* 4) ;
 HEIGHT := HEIGHTOFCHAR + (BORDERWIDTH* 4) ;

 XCOORD := 150;
 YCOORD := 100;
END; { Initialise }

PROCEDURE MOVEWINDOW;
 { This routine allows the user to move the window
 about using the cursor keys until the enter key
 is pressed. }

 VAR
 CONTINUE : BOOLEAN; { True while positioning window }
 KEY,X,Y : INTEGER;

FUNCTION READKEY : INTEGER;

 { This routine reads a key as soon as it is pressed
 by calling the QDOS trap IO.FBYTE. Only one structure
 is used to define the call and return parameters
 because each register used in the trap is distinct. }

F-2

QL Pascal Development Kit Example Programs

 TYPE
 RT = RECORD;
 D0 : INTEGER; { Error return }
 D1 : INTEGER; { Byte fetched }
 D2 : INTEGER; { Unused }
 D3 : INTEGER; { Timeout }
 A0 : INTEGER; { Channel ID }
 A1 : INTEGER; { Unused }
 A2 : INTEGER; { Unused }
 A3 : INTEGER; { Unused }
 END;
 VAR
 IOREC : RT; { I/0 structure }

 BEGIN { Readkey }
 IOREC.D0 := 1; { IO.BYTE }
 IOREC.D3 := -1; { Infinite timeout }
 CHANNELID(INPUT, IOREC.A0); { Fill in channel ID }

 QTRAP(3,IOREC, IOREC); { Fetch a byte }

 IF IOREC.DO = 0 { Check for error }
 THEN READKEY := 256+IOREC.D1 { OK so return ASCII }
 ELSE BEGIN { Else return error }
 WRITELN('Readkey Fail');
 READKEY := ERROR;
 END;
 END; { Readkey }

 BEGIN { Movewindow }
 X := XCOORD; { Initial x position }
 Y := YCOORD; { Initial y position }
 CONTINUE: =TRUE;

 { Enable the cursor }
 ERR := SCREEN1 (SCREENCURSOR) ;

 WHILE CONTINUE DO
 BEGIN
 XCOORD := X; { Update x position }
 YCOORD := Y; { Update y position }

F-3

QL Pascal Development Kit Example Programs

{ Clear the screen }
ERR := SCREEN1 (SCREENCLEAR) ;

{ Remove old border, redraw window with a white border}
ERR := SCREEN3 (SCREENBORDER , BLACK , BORDERWIDTH);

ERR := WINDOW7 (WINDOWDEFINE, WIDTH, HEIGHT, XCOORD,
 YCOORD , WHITE , BORDERWIDTH);

{ Get the key pressed }
KEY := READKEY ;

{ Adjust the position of the window accordingly
 ensuring that it cannot be moved off the screen }

IF KEY=DOWN
THEN BEGIN
 IF HEIGHT+Y<256
 THEN Y := Y+1;
 END
ELSE IF KEY=UP
 THEN BEGIN
 IF Y>0
 THEN Y := Y-1;
 END
 ELSE IF KEY = LEFT
 THEN BEGIN
 IF x>0
 THEN X := X-1;
 END
 ELSE IF KEY=RIGHT
 THEN BEGIN
 IF WIDTH+X<512
 THEN X := X+1;
 END
 ELSE IF (KEY = ENTER) OR (KEY = ERROR)
 THEN CONTINUE: = FALSE;
END: { While Loop}

END; { Movewindow }

F-4

QL Pascal Development Kit Example Programs

PROCEDURE SHOWTIME;
{ This routine displays the time }
VAR
 HH,MM,SS : INTEGER;

BEGIN
 { Disable the cursor }
 ERR := SCREEN1 (SCREENNOCURSOR) ;

 WHILE TRUE DO { i.e., loop indefinitely }
 BEGIN
 { Draw white border }
 ERR := SCREEN3 (SCREENBORDER, WHITE, 1);

 { Home the cursor }
 ERR := SCREEN3 (SCREENAT, 0,0)?

 { Get the time ... }
 TIMEOFDAY (HH,MM,SS);

 { ... and write it out }
 WRITE(HH:2,' : ',MM:2,' : ',SS:2)?7
 END;

END;

BEGIN { Clock }
 INITIALISE; { Set-up the window }
 MOVEWINDOW; { Move the window around }
 SHOWTIME; { Display the time }
END; { Clock }

Example 2: Peek and Poke

This example program shows how routines written in MetaComCo's
assembler and BCPL can be easily interfaced to Pascal by the use of
the external directive.

The BCPL routine is a PEEK function which returns the contents of the
Specified memory Location; the assembler routine is POKE which allows
a given memory Location to be changed.

F-5

QL Pascal Development Kit Example Programs

The three routines are connected by the BCPL global vector (see BCPL
Development kit for details).

Each routine must be compiled using the relevant compiler or
assembler. They can then be linked together using PASLINK (see
Foreword for details).

Note that both Peek and Poke could have been written in BCPL or
assembler.

{******************** Pascal Program **************
* *
* An example to show how easy it is to link in *
* sections written in BCPL and assembler. This *
* program must be Linked with the BCPL program *
* Peek and the assembler program Poke. *
* *

PROGRAM MEMORY (INPUT, OUTPUT);

VAR
 ADDRESS CONTENTS, VALUE : INTEGER;

 { External assembler routine to Poke a location }

PROCEDURE POKE(ADDRESS, VALUE : INTEGER);
 EXTERNAL 175,

{ External BCPL routine to Peek a location }

FUNCTION PEEK(ADDRESS : INTEGER) : INTEGER;
 EXTERNAL 176,

BEGIN
 WRITELN('Input address to change');
 READLN(ADDRESS) ;

 WRITELN('Input new value');
 READLN(VALUE) ;

F-6

QL Pascal Development Kit Example Programs

 POKE(ADDRESS, VALUE);

 WRITELN('Long word contents of ',ADDRESS,
 ' changed to ',VALUE);

 WRITELN('Input address to examine’);
 READLN(ADDRESS) ;

 CONTENTS: =PEEK(ADDRESS) ;

 WRITELN('Long word contents of ',ADDRESS,
 ' is',CONTENTS);

END. { Memory }

//******************BCPL Program********************
// *
// This routine examines an address in memory *
// and returns the long word contents. It must *
// be linked to the Pascal program Memory with *
// the assembler program Poke. *
// *
//**

SECTION "peek"

GET ""LIBHDR"

GLOBAL $(peek : 176 // Peek is global 176
 $)

// Convert BCPL address to machine address and
// return the contents to Pascal.

LET peek (address) = !(address >> 2)

F-7

QL Pascal Development Kit Example Programs

*****************Assembler Program *****************
* *
* This routine updates the memory location given *
* as its first argument (D1) with the value given *
* as its second argument (D2). It must be Linked *
* to the Pascal program Memory with the BCPL *
* program Peek. *
* *
**
*
* Poke is global number 175
*
G_POKE EQU 175
*
* Section begins with a length count
*
MODS DC.L (MODE-MODS)/4
*
* Update address with supplied value
*
POKE MOVE.L D2,0(A0,D1.L)
*
* Return to Pascal
*
 JMP (A6)
*
* Ensure global information is longword aligned
*
 CNOP 0,4
*
* Mark beginning of global/offset list
*
 DC.L 0
*
* Define global number and offset in program
*
 DC.L G_POKE,POKE-MODS
*
* Mark highest referenced global
*
 DC.L 100

MODE END

F-8

OL Pascal Development Kit Compliance statement

Appendix G: Compliance Statement

QL Pascal 68000 is an implementation of a standard Pascal which has
passed validation by the British Standards Institution under the ISO
Standard 7185 "Specification for computer language PASCAL". The
implementation-defined features are as follows:

E.1 The value of each char-type corresponding to each allowed
string-character is the corresponding ISO character. See
ISO 646 (ASCII).

E.2 The subset of real numbers denoted by signed real are the
values representable with 32-bit floating point. This is
about 7 decimal places.

E.3 The values of char-type are the ISO character set. See ISO
646 (ASCII).

E.4 The ordinal numbers of each value of char-type are the code
values given in ISO 646 (ASCII).

E.5 The point at which the file operations REWRITE, PUT, RESET,
and GET are performed, determined by the normal conventions
of the operating system. Control is not returned to the
program until the operation has been completed. Note that
there is line by line buffering for normal interactive I/O.
However, the Lazy I/O ensures that prompts can be written
before input is read.

E.6 The value of MAXINT is 2147483646

E.7 The accuracy of the approximations of the real operations
and functions is determined by the representation (see
E.2), and by the truncation of intermediate results. This
gives approximately 7 decimal digits of precision.

E.8 The default value of TotalWidth for integer-type is 12

E.9 The default value of TotalWidth for real-type is 13

G-1

OL Pascal Development Kit Compliance statement

E.10 The default value of TotalWidth for Boolean-type is 5

E.11 The value of ExpDigits is 2

E.12 The exponent character is 'E' (Upper case).

E.13 The case used for output of the values of Boolean-type is
upper case.

E.14 The procedure page outputs the form-feed character (ASCII
decimal 12). The effect on any particular device depends
upon that device.

E.15 File-type program parameters should be bound to the program
by the usual operating system mechanism.

E.16 REWRITE does not overwrite previous output to the standard
file output. RESET sets the file variable to the first
component of the standard file output.

E.17 The equivalent symbol to '*' is implemented.
The equivalent symbol to '{' is implemented.
The equivalent symbol to '}' is implemented.

The following errors are not, in general, reported:

 D.2, D.4, D.5, D.6, D.19, D.20, D.21, D.22, D.25, D.27, D.30,
 D.32, D.43, D.48

The following errors are detected prior to, or during execution of a
program:

 D.1, D.3, D.7, D.8, D.9, D.10, D.11, D.12, D.13, D.14, D.15,
 D.16, D.17, D.18, D.24, D.23, D.26, D.28, D.29, D.31, D.33, D.34,
 D.35, D.36, D.37, D.38, D.39, D.40, D.41, D.42, D.44, D.45, D.46,
 D.47, D.49, D.50, D.51, D.52, D.53, D.54, D.55, D.56, D.57, D.58

The processor does not contain any extensions to ISO 7185 (such
extensions must be enabled by means of a compiling option, not the
subject of validation).

G-2

OL Pascal Development Kit Compliance statement

Implementation dependent features F.1 - F.7, F.10 and F.11 of Pascal
are treated as undetected errors. If the procedure page is used to
write to a file then the effect of reading from that file is to read
the form-feed character (F.8) The binding of variables denoted by
program parameters which are not of file-type is treated as an
undetected error (F.9)

G-3

QL Pscal Development Kit Index

INDEX

* (quote) 18, 31

(18, 78, 81, 83

[] 78

] 18, 78, 81, 83

A 18, 95, 100, 102

{ 18, 27

} 18, 27

(18, 67, 74, 85, 91, 104, 105, 107

(* 27

(. 78, 81

) 18, 67, 74, 85, 91, 104, 105, 107

* 18, 36, 38, 49, 50, 80

*) 27

+ (plus) 18, 29, 36, 38, 49, 50, 80

, (comma) 18, 33, 60, 68, 69, 74, 85,
86, 91, 98, 99, 104, 105, 107

- (minus) 18, 29, 36, 38, 49, 50, 80

(dot) 18, 30, 43, 87

) 78, 81

.. 18,76

_ 18, 38, 49

: (colon) 18, 33, 60, 61, 63, 65, 68,
69, 71, 86, 91

:= 18, 45, 52, 66

; (semicolon) 18, 33, 43, 44, 58, 60,
61, 63, 64, 65, 86, 91
< 35, 36, 46, 51

<= 18, 35, 36, 46, 51,79

<> 18, 35, 36, 46, 51,79
= (equals) 18, 31, 79

> 35, 36. 46, 51

>= 18, 35, 36, 46, 51,79

@ 18, 95, 100, 102

A(ED) 11,14
ABS 28, 37, 38
Access of named files by internal
 files 105
Accessing text-files 106
Action in programs 43
Activation of a function 65
Activation of a procedure 64
Activation of a subprogram 64
Allocate new variable 98
ALT (ED) 2, 3
ALT-DOWN (ED) 5, 13
ALT-LEFT (ED) 3, 13
ALT-RIGHT (ED) 3, 13
ALT-UP (ED) 5, 13
Altering text (ED) 11
Altering windows 2
AND 19, 35, 50
ARCTAN 28, 38
Arithmetic operators 36
ARRAY type 19, 42, 81
Array type errors C1
Arrays, packed 82
ASCII character set 39
Assigning literals 83
Assigning string constants 83
Assignment compatibility 52, 75, 77,
83, 84, 87
Assignment operator 45
Assignment statement 43, 44, 47
Automatic RH margin (ED) 4

B(ED) 9, 10, 14
Backwards find (ED) 10, 14
BE (ED) 8, 14
BEGIN 19, 43
BF (ED) 10, 14
Binary file input v
Blank characters, use of 27

-i-

QL Pscal Development Kit Index

Block control (ED) 8, 9, 14
Block levels 20
Block nesting 20
Block structure 20
Blocks 21
BOOLEAN 28
Boolean and string-literals E1
Boolean operands 35
Boolean type 34, 35
Boolean values 35
Bottom of file, move to (ED) 9
Branching statements 44, 56
BS (ED) 8, 14
Buffer variables 102, 103

Calculating value (expression) 45
Case label constants 61
Case label list 61
CASE statement 19, 60
CE (ED)9, 14
Changing the default drive name
Changing the default window vii
CHANNELID procedure D3
CHAR type 28, 34, 39
CHR 28, 39
CL(ED)9, 14
Code file iii, vi
Colon (see :)
Command groups (ED) 12
Command line (ED) 2
Commands, extended (ED) 2, 6, 14
Commands, immediate (ED) 2, 3
Commands, multiple (ED) 6
Commands, repeating (ED) 6, 11
Comments 27
Compatibility rules 46, 47
Compilation error codes B1-5
Compilation error, possible iv,
 44, B1-5
Compilation listing file 111
Compiler, running the ii
Compliance statement G1-3
Compound statement 43, 44, 64
Conditional assignment of Boolean
 variables 58
Conditional statements 43
CONST 19
Constant definitions 24, 31
Constructing a set 78
Control in programs 43
Control key combinations (ED) 2
Control selection 56
Control transfer 56

Control variables in FOR statement 39
Controlled repetition 44
Conventions, notational 17
COS 28, 38
CR(ED)9, 14
CS(ED)9, 14
CTRL (ED) 3
CTRL-ALT-LEFT (ED) 3, 5, 11, 13
CTRL-ALT-RIGHT (ED) 5, 13
CTRL-C 1,5
CTRL-DOWN (ED) 4, 13
CTRL-LEFT (ED) 6, 13
CTRL-RIGHT (ED) 5, 6, 11, 13
Curly brackets {}, use of 27
Cursor control (ED) 3, 4.9.14

D(ED) tt, 14
Data 28
Data conversion 91
Data declaration 33
Data structures, flexibility of 91
Data type definition 33
Data types, categories of 34
Data types, simple 42
Data types, sophisticated 42
Data used and understood by QL Pascal
68000 28
Date procedure D5
DB(ED) 8,14
DC (ED) 11, 14
Decimal notation, use of 29
Declarations 23
Default drive vii, viii
Default window vii
Defining point (identifier) 22
Definitions 23
Deleting text (ED) 5, 8, 11, 13, 14
Delimiters (ED) 6. 10
Digits 19
Directive, specification of 72
DISPOSE 28, 95, 98, 99
Distinguish between U/C and l/c (ED)
14
DIV 19, 36, 49
DO 19, 52, 55, 89
DOWN (ED) 3, 13
DOWNTO 19, 52
Dynamic allocation errors C4
Dynamic data structures 95
E (ED) 10, 11, 14
E scale factor 30, 34
ED 1-14
ED, loading 1

-ii-

QL Pscal Development Kit Index

ED, running concurrent versions of 1
ED, running two versions of 5
ED, terminating 1
Editing more than one file (ED) 7, 14
ELSE 19, 57, 58
Empty set 78
Empty statement 43, 44
END 19, 43, 60, 86
End of line (ED) 9
End-of-line characters, use of 27
ENTER (ED) 4
Enter extended mode (ED) 13
Enumerated type 34, 74
EOF 28, 36, 103
EOLN 28, 36, 106
EQ(ED) 10, 14
Equate U/C & I/c in searches (ED) 14
Error messages (ED) 2
Error messages vi, C1-6
Errors in compilation iv
Errors, collected C1-6
Errors, miscellaneous C6
Escape characters (ED) 4
EX (ED) 4, 8, 14
Example programs 25, Ft-8
Exchange (ED) 10
Exchange and query (ED) 10, 14
Exchange strings (ED) 14
Exchanging (ED) 10
EXEC 1,5
Executing a program vi
Execution error, possible 44
EXEC_W 1,5
Exit (ED) 7, 14
EXP 28, 39
Exponent (E) 30, 34
Exponential function 39
Expressions 45
Extend margins (ED) 8, 14
Extended commands (ED) 2, 6, 14
Extended commands, multiple (ED) 6
Extended mode, enter (ED) 13
Extension to ISO 105
Extensions to ISO standard D1-11
External directive D2

F1 (ED) 10, 14
F2 (ED) 6, 13
F3 (ED) 6, 13
F4 (ED) 5, 13
FALSE 28, 34, 35
Field designators 87, 88
Field identifiers 87

FILE 19
File components 102
File handling procedures 103
File inspection by program 102
File transfer program 104
File type 102
File type errors C2
File variables, declaration of 102
Filenames t
Find (ED) 10, 14
Fixed-point format E3
Floating-point format E2
Floating-point numeric literals E3
FOR 19
FOR statement 51, 52, 64, 65, 76, 84
Formal parameter List 67, 71
Formal parameters, specification of 67
FORWARD directive 72
FUNCTION 19
Function activation 65
Function calls 66
Function declaration 25, 65
Function declaration parameters 67
Function definition 63, 65
Function designator 45
Function identifier 66
Function invocations 43
Function keys (ED) 3, 13
Functional parameters 67, 70
Functions 22, 63, 65

Generating text-files 106
Generation mode (file variables) 103
GET 28, 103
Global declarations 63, 65
Global definitions 63, 65
Global identifiers 64, 65
GOTO 19, 23
GOTO statement 56, 60, 61
Graphics include file D4

Horizontal scrolling (ED) 1, 3, 4,8

I(ED) 11, 14
I/O errors C2
I/O facilities 105
IB (ED) 8, 14
Identified variables 100
Identifier region 22
Identifier scope 22
Identifiers 17, 19, 22, 27, 45
Identifiers, predefined 28, 35
Identifiers, programmer specified 34

-iii-

QL Pscal Development Kit Index

Identifiers. standard 28
IF (ED) 9, 14
IF 19
IF statement 57
IF statement, examples of 57
IF statements, nested 57
Immediate commands (ED) 2, 3, 13
IN 19, 36, 46, 51, 79
INCLUDE D1, D4
Index arrays 39
Indexed variables 83, 84
Indexes or subscripts, use of 83
INPUT 28, 105
Input file vi
Insert blank line (ED) 4, 13
Inserting text (ED) 4, 8,9,11. 14
Inspection made (file variables) 103
INSTALL viii
INTEGER 28
Integer literals E2
Integer operands 36
Integer range 37
Integer size 15
Integer subrange 37
Integer type 28, 34, 36
Integer, signed 29
Integer, unsigned 29
Integers 29
Invoking a subprogram 64
ISO 7185 / BS 6192. 15
ISO standard 15
ISO standard extensions iii, iv, D1i-
11
Isolating source code 63

J(ED) 11,14
Join (ED) 11, 14

Keywords (ED) 2

LABEL 19
Label declarations 23
Labels, predeclaration of 23
LC (ED) 11, 14
LEFT (ED) 3, 6, 13
Levels of precedence 46
Line length (ED) 4, 6
Linked list, example of a 100
Listing file iii
Literal operands 45
Literals, assigning 83
LN 28, 39
Load and execute program vi

Loading ED 1
Local declarations 64, 65
Local definitions 64, 65
Local variable declarations 67
Logarithm. natural 39
Logical functions, predefined 36
Logical operators 35
Lower case 17, 19

M(ED) 9, 14
Main control block 21
Main memorysstorage buffers 102
Main program block 63
Manipulating resident arrays 15
Manipulation of sets 80
Margins (ED) 4, 8
MAXINT 28, 32
MC68000 15
Message area (ED) 2
MOD 19, 36, 49
Moving in file (ED) 3, 5, 9, 13, 14
Moving windows 2
Multiple commands (ED) 2
Multiple extended commands (ED) 6

N(ED) 9, 14
Natural logarithm 39
Nested subprograms 64
Nesting blocks 20
Nesting procedures and functions 22
NEW 28, 95, 98
Next line, move to (ED) 9, 14
NIL 19, 96, 97
Non-ordinal simple type 42
NOT 19, 35, 50
Numbers 29
Numeric values 17

ODD 28, 36
OF 19, 60, 77, 102
Operands 36
Operation rules 46
Operations between variables 46
Operator precedence 46
Operator precedence, rules of 46
Operators, arithmetic 36
Operators, logical 35
Operators, relational 35
Optional items 17
OR 19, 35, 50
ORD 28, 37, 39
Ordinal functions 39, 77
Ordinal numbers 34

-iv-

QL Pscal Development Kit Index

Ordinal type 34
OUTPUT 28, 105
OUTPUT formatting E1-4

P(ED) 9, 14
PACK 28, 85
PACKED 19
Packed arrays 82, 83
PACKED data 81, 85
Packing array data 85
Packing errors C1
PAGE 28, 106
Parameter errors C5
PASLINK vi
Plot function D10
Pointer type 42, 95
Pointer type errors C4
Pointer type variables, initialisation
 of 96
Pointer type variables, modification
 of 96
Pointer type, examples of 95
Pointers 42
Precedence of relational operators 80
Precedence, operator 46
Precedence, rules of operator 46
PRED 28, 37
Predefined constants 32, 38, 39
Predefined identifiers 28, 35
Predefined logical functions 36
Previous line (ED) 9, 14
Procedural parameters 67, 70'
PROCEDURE 19
Procedure activation 64
Procedure calls 64
Procedure declaration, global 64
Procedure declaration, local 64
Procedure declaration 25, 63, 64, 67
Procedure declaration parameters 67
Procedure definition, local 64
Procedure definition 63, 64
Procedure identifiers 64
Procedure invocations 43
Procedures 22, 63, 64, 67
Prodecure definition, global 64
PROGRAM 19
Program action 43
Program block 21, 43
Program contents 21
Program control (ED) 7
Program control 22, 43, 63
Program control transfer 23, 61
Program execution vi

Program portability 91
Programmer specified identifiers 34
PUT 28, 103

Q(ED)7, 14
QTRAP procedure D2
Quit (ED) 7, 14

R(ED) 7, 14
Random function D4
Random-access data structures 83
Range checking 111
Re-entering editor (ED) 7, 14
READ 28, 104
READLN 28, 106
REAL 28
Real number literals E2
Real numbers 29, 34
Real type 34, 38
Recolour function D1i1
RECORD 19
Record fields 86
Record type 42, 86
Record type errors C2
Records 42
Recursion 64
Recursion, example of 64
Recursive procedures 64
Recursive subprograms 72
Redraw screen (ED) 5, 13
Reference forward (before declaration)
72
Referencing an indexed variable 84
Region of an identifer 22
Relational operators 35, 36, 79
REPEAT 19
Repeat last command (ED) 11, 13
REPEAT statement 51, 55, 56
Repeat until error (ED) 11, 14
Repeating commands (ED) 6, 11, 13, 14
Repetition 51
Repetitive statements 43, 51
Reserved words 17, 19, 27
RESET 28, 103, 105
RESET procedure D1
RETURN (ED) 11
REWRITE 28, 103, 105
REWRITE procedure Di
RIGHT (ED) 3, 6, 13
Right hand margin (ED) 4
ROUND 28, 37
RP (ED) 11, 14
Run-time library vi

-v-

QL Pscal Development Kit Index

Running a program v
Running two versions of ED 5

S(ED) 11, 14
SA (ED) 7, 14
Save (ED) 7, 14
SB (ED) 8, 14
Scope of an identifier 22
Screen display (ED) 3
Screen editor (ED) 1-14
Screen function D6
Screen redraw (ED) 5, 13
Scrolling (ED) 1, 3, 4,5, 8, 13
Searching (ED) 10. 11, 14
Select or transfer control in program
44
Semicolon (see ;)
Separators 27
Sequence control within a program 44
Sequential access data structures 102
SET 19
Set constructors 78
Set left margin (ED) 8, 14
Set manipulation 80
Set right margin (ED) 8, 14
Set tabs (ED) 8, 14
SET type 42, 74, 77
Sets 15, 42
SH (ED) 8, 14
SHIFT (ED) 3
SHIFT-CTRL-RIGHT (ED) 5, 13
SHIFT-DOWN (ED) 3, 13
SHIFT-ENTER(ED) 4
SHIFT-LEFT (ED) 3, 13
SHIFT-RIGHT (ED) 3, 13
SHIFT-SPACE (ED) 4
SHIFT-UP (ED) 3, 13
Show block (ED) 8, 14
Show current state (ED) 8, 14
Signed integers 29
Simple data types 27, 42
Simple statement 43, 64
Simple type. non-ordinal 42
Simple types 34
SIN 28, 38
SL (ED) 8, 14
Source code, isolating 63
Special keys (ED) 3, 13
Special symbols 18, 19, 27
Specification of a directive 72
Splitting lines (ED) 4, 11, 14
SQR 28, 37, 38
SQRT 28. 39

SR (ED) 8, 14
ST (ED) 8, 14
Stack size vi
Standard identifiers 28
Start of line (ED) 9
Statements 25, 43
Statements, compound 43
Statements, simple 43
Statements, structured 43
Static variables 95
Storage allocation for variant
 records 98
Storage de-allocation for variant
 records 99
Storing structured data 81
Strdate procedure D5
String constants, assigning 83
String delimiters (ED) 6
String type 83
Strings 31
Strtimeofday procedure D5
Structured data type 81, 102
Structured data, storing 81
Structured statement 43, 44, 64
Structured types 34, 42
Subprogram blocks 43, 63
Subprogram chains 64
Subprogram, activation of 64
Subprogram, invoking a 64
Subprogram, nested 64
Subprograms 22, 63, 64
Subrange type 34, 74, 76
Subscripts or indexes, use of 83
SUCC 28, 37
Switching windows 5
Syntax, quick reference Al-7

T(ED)9, 10, 14
TAB(ED)3, 4,8
Tag fields 91
Tag type definition 91
Target destination of GOTO, rules
 governing 61
Terminating ED 1
TEXT 28, 103
text-file. generating 106
text-files, accessing 106
THEN 19, 57
Time function D4
Timeofday procedure D5
TO 19, 52
Tokens 18
Top of file, move to (ED) 9, 14

-vi-

QL Pscal Development Kit Index

Totalwidth fields E1
Transfer functions 39
Trigonometric functions 38
TRUE 28, 34, 35
TRUNC 28, 37
TYPE 19
Type Boolean 35
Type Char 39
Type declarations 40
Type definition 24, 33
Type Integer 36
Type Real 38
Type unions 91

U(ED) 7, 14
UC (ED) 11,14
Undo last change (ED) 7, 14
UNPACK 28, 85
Unpacking array data 85
Unsigned integers 29
UNTIL 19, 55
UP (ED) 3, 13
Upper case 17, 19

Value parameters 67, 68
VAR 19, 69
Variable declaration 24, 33, 34, 40
Variable information 17

Variable parameters 67, 69
Variable, allocate new 98
Variables, de-allocate 99
Variant record parts 91
Vertical scrolling (ED) 1.3, 5,8
Vocabulary data 27

WB(ED)9, 14
WHILE 19
WHILE statement 51, 55
WHILE statements, examples of 55
Window changing 1
Window function D9
Window size 2
Window switching 5
Window, default vii
Windows, altering 2
WITH 19
WITH statement 62, 88, 89
WITH statements, examples of 89
Word symbols 19
Workspace (ED) 1,2
Workspace iii. iv
WRITE 28, 104
Write block (ED) 9. 14
WRITELN 28, 106

X(ED)7, 14

-vii-

	Using QL Pascal
	Use of the EPROM cartridge
	The Pascal Compiler
	Running the compiler
	Compilation
	Running a program
	Linking in the Pascal run-time library
	Program execution
	Changing the default window
	Changing the default drive names

	The INSTALL program

	Chapter 1: The Screen Editor
	1.1 Introduction
	1.2 Immediate commands
	Cursor control
	Inserting text
	Deleting text
	Scrolling
	Repeating commands

	1.3 Extended commands
	Program control
	Block control
	Movement
	Searching and Exchanging
	Altering text
	Repeating commands

	1.4 Command list
	Immediate commands
	Extended Commands

	Chapter 2: Introduction to QL PASCAL
	2.1 Introduction

	Chapter 3: Language Guide
	3.1 Language overview
	Notational conventions
	Tokens
	Block structure
	Figure 1
	A PASCAL Program
	Scope

	Declarations and Definitions
	Label declarations
	Constant definitions
	Type definitions
	Variable declarations
	Statements

	3.2 Language vocabulary and data
	Comments
	Standard identifiers
	Data
	Numbers
	Integers
	Real Numbers
	Strings
	Constant definition
	MAXINT

	Chapter 4: Type definitions and variable declarations
	4.1 Simple types
	Ordinal Types
	Type real
	4.1.1 Type BOOLEAN
	Logical operators
	Relational operators
	Predefined logical functions

	4.1.2 Type INTEGER
	4.1.3 Type REAL
	4.1.4 Type CHAR

	4.2 Structured types

	Chapter 5: Statements
	5.1 Control and action in PASCAL programs
	Compound statement
	Empty statement
	Structured statements

	5.2 ASSIGNMENT statement
	Expressions
	5.2.1 Operators
	Operator Precedence
	Operation rules
	Compatibility rules
	Assignment rules
	Assignment compatibility rules
	Operator summary
	Table 1 : Monadic Arithmetic Operators
	Table 2 : Dyadic Arithmetic Operators
	Table 3 : Boolean Operators
	Table 4 : Set Operators
	Table 5 : Relational Operators

	5.3 Repetition
	5.3.1 FOR statement
	5.3.2 WHILE statement
	5.3.3 REPEAT statement

	5.4 Branching statements
	5.4.1 IF statement
	5.4.2 CASE statement
	NOTES

	5.4.3 GOTO statements
	WITH statement

	Chapter 6: Subprograms
	6.1 Procedures
	A Procedure declaration
	Activation
	A Procedure call
	Recursion

	6.2 Functions
	A Function call

	6.3 Formal parameter list
	Value parameters
	Variable parameters
	Procedural and functional parameters
	Variable parameters

	6.4 The FORWARD directive

	Chapter 7: Structured types
	7.1 Enumerated, Subrange and Set types
	Enumerated types
	Subrange type
	SET type
	PACKED data

	7.2 The ARRAY type
	String types
	Indexed variable
	PACK and UNPACK

	7.3.1 The RECORD type
	7.3.2 WITH statement
	Variant record parts

	7.4.1 Pointer types
	Pointer variables

	7.4.2 NEW
	7.4.3 DISPOSE
	Identified variables
	Figure 2

	7.5.1 File type
	7.5.2 File handling procedures
	7.5.3 READ and WRITE

	7.6 INPUT / OUTPUT facilities
	INPUT and OUTPUT
	EOLN
	READLN
	WRITELN
	PAGE
	General

	Appendix A Pascal syntax quick reference guide
	Type definitions
	Predefined types:
	Enumerated types:
	Subrange types:
	Set types:
	Array types:
	Record types:
	File types:
	Pointer types:

	Variable declarations
	Procedure and Function declarations
	Statements
	Assignment statements:
	Goto statements:
	If statements:
	For statements:
	While statements:
	Repeat statements:
	Case statements:
	With statements:
	Arithmetic expressions:

	Appendix B: Compile-time error messages
	Appendix C: Collected errors
	Array Types and Packing
	Record Types
	File Types, Input and Output
	Pointer Types
	Dynamic Allocation
	Required Functions and Arithmetic
	Parameters
	Miscellaneous
	Order of Evaluation:

	Appendix D: Extensions to the ISO Standard
	RESET and REWRITE
	INCLUDE
	EXTERNAL
	QTRAP
	CHANNELID
	The Graphics Include File
	i) Random
	ii) Time
	iii) Timeofday
	iv) Strtimeofday
	v) Date
	vi) Strdate
	vii) Screen
	viii) Window
	ix) Plot
	x) Recolour

	Appendix E: WRITE and WRITELN OUTPUT Formatting
	Boolean and string-literals
	Integer literals
	Real number literals
	Floating-point format
	Fixed-point format

	Appendix F: Example Programs
	Example 1: Digital Clock
	Example 2: Peek and Poke

	Appendix G: Compliance Statement
	INDEX

