
f)MOl'f II 
···.=.II 

-by 
Tony T e-b-by 

""'D 
~ DIGITRL PRE[/5/0N LTD 

0 D 

Published by Digital Precision Ltd, 222 1be Avenue, London E4 9SE Copyright 1992 



(X)NTEN'fS 

0 An Overview 
1 About QMON 
2 QMON Commands 

2.1 Addresses 
2.2 Conditions 
2.3 Escape 

3 Invoking QMON 
3.1 Examples of invoking QMON 

4 Concepts . 
4.1 Trace 
4.2 Breakpoints 
4.3 Exceptions 
4.4 Trap #4 

5 Assembler format 
6 Command Reference 

6.1 Go 
6.2 Trace 
6. 3 Recall 
6.4 Trace Level 
6.5 Breakpoints 
6.6 Display 
6.7 Set 
6.8 Modify 
6.9 Edit 
6.10 Find 
6.11 Open 
6.12 Calculate 
6.13 Macro Command 

7 Examples of Use 
7.1 SuperBASIC Extensions I 
7. 2 SuperBASIC Extensions II 
7.3 SuperBASIC Extensions III 
7.4 Executable Programs 

8 Quick Reference Guide 
9 Job Control Extensions 

10 QMON Version Updates 
10. 1 Minerva 
10.2 Pointer Environment 
10.3 Gold card I Atari ST 
10.4 General 

11 General Structure of QMON 
11.1 Setup 
11.2 Exception processing 
11.3 Commands 
11.4 Assembler I disassembler 
11.5 QMON utilities 
11. 6 SuperBASIC ut i 1 it i es 
11 . 7 Impure code 
11.8 Register usage 

-"D 
..4D1GITAL PRE0510Nao 

0 D 222 The Avenue 
Chingford 

London 
E49SE 

Copyright Tony Tebby and Jan Jones 1985. All rights reserved. 
Unauthorised copying, hiring, lending or sale and repurchase prohibited. 
QL, QDOS and SuperBASIC are trademarks of Sinclair Research Ltd. 



0 An Overview 

QMON II is a low level monitor/debugger designed specifically for the QL 
and its operating system QDOS. It is ideally suited to the task of 
checking and debugging assembly language programs, and extensions to the 
SuperBASIC interpreter. Even if you already have a monitor/debugger for 
your QL, QMON II will provide extra assembly language programming power. 
QMON can also be used to monitor programs written in high level 
1 anguages . · ·,,' 

QMON is designed to integrate into the QDOS environment. This makes it 
possible to monitor just one job in the QL, or all the jobs that are 
executing. While tracing a job, QMON will normally skip the entries into 
QDOS, but it can trace right through QDOS. QMON does not interfere with 
QDOS so it is entirely feasible to examine one job in the QL, while 
other jobs continue unimpeded. 

QMON has an extensive range of facilities including a window based 
memory editor, single- and multi- stepping, tracing and back-tracing 
with fixed and conditional breakpoints, as well as a macro command 
facility for tracing and patching, together with an unusually powerful 
set of commands for examining and altering machine code and data. 

Despite its wide range of facilities QMON is very compact. 
includes a complete MC68008 single line assembler, 
disassembler, occupies only llk bytes, while a reduced 
included which takes 5k bytes. 

About QMON 

The program 
editor and 
version is 

QMON is a tool to assist software developers. It is not intended as an 
aid to pirating other people's software or circumventing any of the 
mechanisms for protecting software. For this reason, there are some 
facilities, which could have been included, which have been omitted. 
This should not affect the use of QMON for legitimate purposes. 

QMON is supplied on a Microdrive cartridge or floppy disk with a number 
of files: 

BOOT 
QMON 
QMON_BIN 
JOB 
JOB BIN 
CLOCKS 
CLOCKS_LIST 

SuperBASIC program to load QMON_BIN 
SuperBASIC program to load QMON BIN 
the QMON resident debugger 
SuperBASIC program to load JOB_BIN 
job control extensions to SuperBASIC 
configurable clock program 
assembly listing of clocks 

The job control extensions and the configurable clock are supplied 
primarily as examples for learning to use QMON. But the job control 
extensions are also valuable for program development. 

Before going any further please make a backup copy of the disk or 
cartridge, using WCOPY or similar (or our Transfer Utility!). Archive 
the original and use only the backup. This program is protected by 
international copyright law - do not break it. 

If we have anything to add to the manual, we will put a Quill 
UPDATES DOC on the medium. 



2 QMON Commands 

Commands may be in either upper or lower case. In general a command 
consists of a one or two letter abbreviation, followed by an optional 
channel number (which specifies where the output, if any, from the 
command will be sent) and some parameters separated by spaces: 

Dl 28000 10 

Display on channel from address 28000 10 (hex) bytes 

In most cases, most or all of the parameters are optional. Thus, after 
the example above, new defaults for the display command are set so that: 

Dl has the same effect as 

Dl 28010 10 

Display on channel from next address the same number 

Note that, in QMON commands, a number is assumed to be hexadecimal to 
make the handling of data structures simpler, while the assembler 
assumes that a number is decimal. This is Motorola standard and it 
avoids confusion between, for example, register D2 and the address $D2. 
Throughout, QMON will accept hexadecimal numbers starting with$ (e.g. 
$28000, the system variable base) and decimal numbers starting with & 
(e.g. &131072, the base address of the screen). The command handling of 
QMON wi 11 accept simple arithmetic expressions in both hexadecimal and 
decimal, and there is a command to calculate the value of an expression 
and print it in both (tmsigned) decimal and (unsigned) hexadecimal. 

In this document, the parts of commands which are printed in upper case 
are the actual characters typed, those parts in lower case are symbolic 
while square brackets ([ ... ]) are used to denote optional parameters. A 
lower case 'c' is used to denote the optional channel number. 

<ESC> denotes the key marked ESC, <ENTER> denotes the key marked ENTER 
and <CTRL> denotes the key marked CTRL. 

<ENTER> will cause a line to be actioned, while <ESC> and the up and 
down arrows will abandon the current line. 

When typing commands, errors may be corrected in the same way as for the 
standard line editing on the QL. The left and right arrows move the 
cursor, while in conjunction with <CTRL> they delete characters. 

Execution (GO, TRACE and QUICK TRACE) 

G 
G address 
GB address 
GB address condition 
GR 
Tc 
Tc number 
TUc condition 
TBc address 
TBc address condition 
TRc 
Q number 
QU condition 
QB address 
QB address condition 
QR 
<ENTER> 

GO from current instruction 
GO from address 
GO until breakpoint at address 
GO until condition at breakpoint 
GO until return 
TRACE one instn1ction 
TRACE number of instructions 
TRACE until condition 
TRACE until breakpoint at address 
TRACE until condition at breakpoint 
TRACE until return 
QUICK number of instructions 
QUICK until condition 
QUICK tmtil breakpoint at address 
QUICK until condition at breakpoint 
QUICK until return 
TRACE or QUICK trace 



Trace Recall 

RS number 
Re 
<ENTER> 

Trace Level 

LU 

LS 

Breakpoint Control 

B [addresses] 
BC 

creates buffer for number of steps 
recall last step 
recall previous step 

traces user mode code only, GOes when 
trace enters a trap (default) 

traces supervisor mode code as well as 
user mode code 

toggle breakpoint(s) and list them 
clear all breakpoints 

Display Registers or Memory 

De [address [number]] 
Dic [address [number] 
DRc 
<ENTER> 

Set Registers or Memory 

SB address byte 
SW address word 
SL address long_worci 
SDn value 
SAn value 
SSP value 
SUSP value 
SSSP value 
SSR value 
SPC value 

Modify Memory 

MBc [address] 
MWc [address] 
MLc [address] 
Mic [address] 

Edit Memory 

Ee [address] 

Find in Memory 

F value [range] 
F 'string' [range] 
FI 'string' [range] 
For FI 

Open Auxiliary Channels 

Oc name 
Oc 

Calculate Address 

C address 

display memory (in hex and ASCII) 
display instn1ctions in memory 
display registers 
continue display 

set byte in memory 
·set word in memory 
set long word in memory 
set data register 
set address register 
set appropriate stack pointer 
set USP (user stack pointer) 
set SSP (supervisor stack pointer) 
set SR (status register) 
set PC (program counter) 

modify memory in bytes 
modify memory in words 
modify memory in long words 
modify instn1ctions in memory 

edit memory 

find a matching string of bytes. 
find a matching string of characters 
find string in an instniction 
continue search 

opens 'name' as channel 'c' 
closes channel 'c' 

calculates address and displays it 



Macro Command 

CS 
er 
CB address 
cc 
ex 

2.1 Addresses 

set macro command 
execute command every trace step 
execute command at breakpoint 
clear er or CB 
execute command 

Addresses (and most other values) may be given as a simple expression 
followed by an index. The expression must only include addition and 
subtraction, and the index may be one or more registers. All 32 bits of 
a register are used in calculating an address. The are some special 
addresses which may be used in the expression: 

* current PC (address of next instruction) 
L address used by the last display command 
N default next address 
S start address of job 

The 'last address' is set by 
(MB, MW, ML and MI) commands, 
is set by the find (F and FI) 
DI) and modify (MB, MW, ML and 

the display (D and DI) commands, modify 
and edit (E) command, the 'next address' 
commands as well as by the display (D and 
MI) commands. 

L-10 
N 
*+2 
4 (Al) 
(A6, D2) 
100(A6,Al ,D2) 

2. 2 Conditions 

$10 bytes before the last display address 
the next display address 
2 bytes on from PC 
contents of Al plus 4 
contents of A6 plus the contents of D2 
$100 more than A6 plus Al plus d2 

A number of the execution control commands (GO, TRACE and QUICK) use a 
condition to determine whether to stop execution. The condition is of 
the form 'register=value' or 'address=value'. The value is assumed to be 
a word unless it is followed by '.B' for a byte, '.W' for a word or '.L' 
for a long word. The '-' may be replaced by a '(' for a less than 
condition, or '>' for a greater than condition. This condition is 
checked after every instruction during TRACE, or, if there is a 
temporary breakpoint, the condition is checked at the conditional 
breakpoint. 

2.3 Escape 

While tracing and while displaying memory, QMON checks the ESC key. If 
the key is found to be depressed, the command is terminated. 

To ensure that the ESC key is detected, it should be held clown until the 
trace or display stops. 

ESC is also used to terminate MODIFY sequences, or to cancel command 
which has not yet been ENTERed. 



3 Invoking QMON 

QMON will be most effective if the QL is running 1n 4 colour mode as it 
will be possible to display more information than in the 8 colour mode. 

QMON is a resident debugger and may be loaded into the QL without having 
any effect on the operation of the QL. QMON becomes active when invoked 
from SuperBASIC and remains active until the QL is reset or the job for 
which QMON was invoked is removed from the QL. 

The QMON cartridge or diskette has a boot file and if this is in drive 1 
when the QL is reset, QMON will be automatically loaded. Otherwise QMON 
may loaded by putting the cartridge or diskette in drive 1 and typing: 

LRUN "FLPl_QMON" (or LRUN "MDVl QMON") or LRESPR "QMON BIN") 

QMON may now be invoked for job O (the SuperBASIC interpreter) by 
typing: 

QMON 

This wi 11 produce the prompt 'Qmon>' in window zero. Al 1 the QMON 
commands may now be used. To allow the BASIC interpreter to continue the 
simple command 'g' (GO) should be used. 

QMON (invoke QMON) 
Qmon> D 28000 (display the first few system vars) 
28000 D254 0000 0002 8EOO 0000 OOFC 0002 9800 .T ......... . 
28010 0003 CAOO 0003 DCOO 0000 0000 0003 DCOO ........... . 
28020 0004 0000 0000 0000 0000 0000 0000 212B ........... . 
28030 0000 0000 OOCO 0001 0000 0000 0000 2CF8 ........... . 
Qmon> G (GO) 

The input and output of QMON will usually share the screen channels of 
the SuperBASIC interpreter. Other screen channels may be used for both 
input and output, and other devices (such as a printer or a file on a 
microdrive or diskette) may be used for displaying memory, or trace 
output. As the channels are usually shared with SuperBASIC, there may be 
some conflict. This is reduced by suspending SuperBASIC. SuperBASIC may 
be released using the normal CTRL SPACE keystroke, and may be suspended 
with the QMON_W command. The QMON_W command has no other effect. 

QMON recognises 4 channels. There is a primary channel which is used for 
all commands, and it is in this channel that QMON will produce the 
register display at a breakpoint or other exception. It is also the 
default channel used for memory displays, etc. Each job monitored by 
QMON has its own primary channel. The other three channels (1 to 3) are 
shared by all jobs being monitored and are used for displaying memory, 
or for listing the short trace. 

QMON by default will trace job O (the BASIC interpreter) in channel #0 
of the SuperBASIC interpreter. If another job is to be traced, then its 
default primary channel will be #1.-

The primary channel for QMON may be either a normal CONsole window of it 
may be a special transient window. The transient window appears when 
QMON is entered to write something to the window, the area of the screen 
occupied by the window having been saved in the heap. When QMON is left 
by an execution command (GO or TRACE), then the original contents of the 
screen are restored. There are 5 five-line transient windows spaced down 
the screen: window O is at the top, while window 4 is at the bottom. In 
order to be able to get a reasonable amount of information displayed in 
the transient window, the display mode is set to 512 pixel mode while a 
transient window is visible. 



QMON may be invoked for a job already executing in the QL, or it may 
load and start a job itself. 

The command to invoke QMON has a number of forms: 

QMON 
QMON [channel] name 
QMON [channel] number 

monitor job 0 
load program 'name' and monitor it 
invoke or re-enter QMON for job number 

The channel may be omitted, in which case, if this is the first time 
QMON has been invoked for the job, the default primary channel will be 
used, otherwise the previously used primary channel will be used. 

The channel or device must be a CON device. There are three ways in 
which the channel may be specified: 

#number, 
name, 
number\ 

a SuperBASIC channel number 
the name of a console device 
a transient window number 

The job number may be found using the JOBS command in the job control 
extensions provided with QMON. However a good guess would be that the 
job number will be 1 if it is the only job other than the SuperBASIC 
interpreter. 

3. 1 Examples of invoking QMON 

QMON 
QMON #2,3 
QMON CON_256x70a0x0,1 
QMON FLPl_clocks 
QMON 0\FLPl_clocks 

monitor job O in window #0 
monitor job 3 in window #2 
monitor job 1 in a small window 
set up clocks program and monitor 1n window #1 
set up clocks program and monitor in the 

transient window at the top of the screen 

If QMON has already been invoked for a job and that job creates a 
daughter job, then the daughter job will share the QMON working area 
with the parent lmt i 1 QMON is invoked for the daughter. 

4 Concepts 

4.1 Trace 

Instructions executed by the MC68008 microprocessor in the QL are traced 
by QMON using the built-in trace facility in the processor. If the trace 
flag is set, then every time the processor executes an instruction, QMON 
is called by QIX)S. The trace flag is in the status register and is 
maintained by QIX)S for each job. It is therefore possible to trace some 
jobs in the QL while others continue to run quite normally. 

QMON has two trace modes: in the normal trace mode the next instruction 
to be executed is written to the trace window after every step while in 
the 'quick trace' mode there is no visible sign that an instruction has 
been executed. In both modes, however, the conditions that govern the 
termination of the trace are checked every step. These conditions are 
one or more of 

a count of instructions executed, 
a check on a register or memory value, 
one or more breakpoints. 



4.2 Breakpoints 

A breakpoint is an address 
monitored by QMON will be 
instn1ct ion to be executed 
breakpoints. 

which is stored in QMON. 
stopped when the address 

is the same as the address 

The job being 
of the next 

of one of the 

QMON handles up to six normal breakpoints as well as one special command 
breakpoint and one temporary breakpoint. 

Breakpoints are handled in two ways in QMON. The first way is used with 
the 'GO' commands. For each breakpoint the first (or only) two bytes of 
the instruction are saved in the QMON working area for the job, and the 
illegal instruction '$4AFB' is substituted. To ensure that the first 
instruction after a 'GO' command is actually executed, even if it is a 
breakpoint, QMON does one invisible trace step before the breakpoints 
are actually set. 

This mechanism will clearly not work if the code being executed is in 
read only memory and cannot be changed. The 'TRACE' commands use a 
different mechanism: the code is not modified to mark breakpoints, but 
the breakpoint list is checked after every step to see if the address of 
the next instn1ction is the same as one of the breakpoints. Whereas 
setting a breakpoint for a 'GO' command does not influence the speed of 
execution of a job (until it actually stops!), even 'quick trace' can 
slow down the execution of a job by a factor of 50. 

4.3 Exceptions 

The MC68008 processor has two modes of operation, user mode and 
supervisor mode. Applications programs execute their own instructions in 
user mode, while 'privileged' code (e.g. the operating system functions) 
execute in supervisor mode. Code executing in supervisor mode has its 
own stack (the supervisor stack) and so QOOS extends the concept of 
privilege to mean that a job executing in supervisor mode cannot be 
interrnpted by the scheduler to allow another job to execute. This means 
that there need only be one supervisor stack for all jobs resulting in a 
considerable reduction in overheads per job by comparison with other 
multi-tasking operating systems for the MC68000 type of processor. 

The mode of operation of the MC68008 is changed to supervisor mode by an 
exception. Exceptions range from the unpredictable (one of the external 
interrupts) through the accidental (e.g. illegal instruction) to the 
controlled (e.g. the trap instructions). QOOS itself is entered by trap 
instructions and so executes in supervisor mode. QMON is also entered by 
exceptions and so it, too, executes in supervisor mode. It does not, 
therefore, use or modify any of the user stack of any job being 
monitored. However, to allow the QL to continue running other jobs while 
one is being monitored, QMON reverts to the job's own mode while it is 
idling waiting for input or output. If QMON is idling in supervisor mode 
the cursor will not be flashing. 

It will not usually be necessary to trace the execution of QOOS traps, 
so prov1s1on is made in QMON to detect a change to supervisor mode 
during trace and 'GO' automatically. As the status register will now be 
saved with the trace flag set, when QOOS returns control to the to the 
application code, the trace will be restored. Unfortunately, the trace 
will not be activated until one instruction after the trap. 

There should rarely be any need to trace supervisor mode code, but if 
this is to be done then the trace level may be set to supervisor. While 
QMON is monitoring supervisor mode code, no attempt should be made to 
display memory or to send trace output to one of the serial ports. The 
microdrives or floppy disks may, however, still be used. 



If QMON is being used to trace a QDOS entry, then a GO instruction will 
GO until the status register is restored on exit from QDOS. 

The exception vector used by QDOS during IO subsystem retries is not 
defined. If you wish to breakpoint or trace the operation of a device 
driver when handling IO with non-zero timeout, then you should ensure 
that all jobs executing have had QMON invoked, or, preferably, that the 
SuperBASIC interpreter is the only job executing. 

When QMON is invoked, it creates an exception redirection vector so that 
QDOS will pass control to QMON when certain exceptions occur. If a job 
already has an exception vector set up (e.g. to action divide checks) 
then not all of the QMON exceptions will be redirected. In some cases, 
if the pointer in the vector does not point directly to an RTE (return 
from exception) instn1ction, then the original pointer will be copied 
into the new vector. 

Exceptions not in the following list are irrelevant to the QL and are 
neither actioned by QDOS nor redirected. 

Exception 
Address Error 
Illegal Instruct ion 
Zero Divide 
CHK Instn1ction 
TRAPV Instruction 
Privilege Violation 
Trace 
Level 2 Interrupt 
Level 7 Interrupt 
Trap #0 to Trap #4 
Trap #5 to Trap #15 

Name 
Acid.er 
Il. ins 
Zero.cl 
Chk 
Trapv 
Priv.v 

Int 7 

Trapn 

Action 
always redirected to QMON 
always redirected to QMON 
pointer copied from old vector 
pointer copied from old vector 
pointer copied from old vector 
always redirected to QMON 
always redirected to QMON 
handled by QDOS 
always redirected to QMON 
handled by QDOS 
pointer copied from old vector 

When QMON is entered by one of these exceptions, the exception name is 
written to the primary channel, fol lowed by a register display. If the 
entry was at a breakpoint, then 'At brp' is written instead of 'II.ins' 

4.4 Trap #4 

Execution of a Trap #4 causes problems for a QDOS monitor. If the 
monitor uses any IO operation after a Trap #4 and before the following 
#2 or Trap #3, then the action of the Trap #4 will be transferred to the 
monitor with unpredictable results. For this reason an attempt to trace 
past a Trap #4 wi 11 cause the monitor to enter quick trace mode unti 1 
the following Trap #2 or Trap #3 has been executed. Ideally the trace 
level should be set to user. There should be no breakpoints in between 
the Traps. When single stepping, if the next instruction is a Trap #4, 
then 'T' should be safe, but 'G' should only be used if it is essential 
to monitor the execution of the instructions between the Trap #4 and the 
following Trap #2 or Trap #3. 

5 Assembler Format 

The assembler and disassembler use Motorola format instructions. The 
assembler will accept the general form of those instructions which have 
more than one particular form (e.g. ADD may be used in place of ADDI and 
ADDA). One limitation is that it is necessary to specify the length of a 
direct address (e.g. TST.B $280EO.L or MOVE.L $110.W,A2). The 
disassembler produces instructions in the particular form (e.g. ADDA or 
ADDI rather than ADD). 

The assembler does not accept expressions. Hexadecimal values or 
addresses should be preceded by$. 



6 Command Reference 

6.1 GO 

G 
G address 
GB address 
GB address condition 
GR 

GO from next instruction 
GO from address 
set temporary breakpoint and GO 
GO until condition at breakpoint 
GO tmt i 1 return 

The GO instructions trace one step invisibly then set $4AFB (illegal 
instruction) at each breakpoint, clear the trace flag and continue 
execution of the job being monitored. In al 1 cases execution wi 11 cease 
if QMON is entered by an exception (other than a breakpoint) or at a 
normal breakpoint. In the case of GB with a condition, if the condition 
is not met at the temporary breakpoint, then execution will continue. 

G 
G 3FC50 
GB *+6 

GB 3FD46 Dl=4 

GR 

6.2 TRACE 

Tc [number] 
Q [number] 
TUc condition 
QU condition 
TBc address 
QB address 
TBc address condition 
QB address condition 
TRc 
QR 

GO from next instruction. 
set program counter to $3FC50 and GO. 
set the temporary breakpoint at 6 

bytes on from the next instruction 
and GO from the next instruction. 

set the temporary breakpoint at $3FD46 
and GO from the next instruction. If 
the condition (Dl.W=4) is not met when 
the instruction at the temporary 
breakpoint address is about to be 
executed, the temporary breakpoint 
remains set and execution continues. 
Execution will cease when either the 
condition is met at the temporary 
breakpoint address, or QMON is entered 
at one of the permanent breakpoints. 

trace one instn1ction then set the 
temporary breakpoint at the (return) 
address to be found on the stack and 
then continue. 
If the next instruction is at address 
$3EFCO and it is a BSR.L, after this 
is executed, the address $3EFC4 will 
be on the stack. Thus the breakpoint 
is set on the first instruction to be 
executed after a normal return. 

TRACE [number of instructions] 
QUICK [number of instructions] 
TRACE until condition 
QUICK until condition 
TRACE until breakpoint 
QUICK unt i 1 breakpoin·t 
TRACE until condition at breakpoint 
QUICK until condition at breakpoint 
TRACE until return 
QUICK tmt i 1 return 

The TRACE instructions set the trace flag and execute the next 
instn1ction. If the command was TRACE rather than QUICK and there is 
more than one instruct ion to be traced, then the address of next 
instn1ction and the instruction itself are written to the channel 'c'. 
If 'c' is given, it should be in the range 1 to 3. TRACE and QUICK will 
continue until the trace count is exceeded, the next instruction is at a 
breakpoint, another exception occurs or the <ESC> is pressed. 



T 
T 20 
T2 10 

QU DO=O 

TB 3FD46 

TB3 3FD46 (a1)=20.b 

QR 

Default Command 

trace one instruction. 
trace $20 instructions. 
trace $10 instructions, writing the 

instructions executed to channel 2. 
trace invisibly until the condition 

(DO. W=O) is met. 
set the temporary breakpoint at $3FD46 

and trace until next instruction 
is at a breakpoint. 

set the temporary breakpoint at $3FD46 
and trace (to channel 3) until the 
the byte at the address currently in 
al is $20 and the program counter is 
at the temporary breakpoint. 

trace one instruction then set the 
temporary breakpoint at the (return) 
address to be found on the stack and 
and quick trace until breakpoint. 
If the next instruction is at address 
$3FF30 and it is a BSR.S, after this 
is executed, the address $3FF32 will 
be on the stack. Thus the breakpoint 
is set on the first instruction to be 
executed after a normal return. 

If the previous command was a TRACE or GO command, then a blank line 
(just <ENTER>) is interpreted as trace one instruction. 

6.3 RECALL 

RS number 
Re 

sets up a buffer for number steps 
recalls last step to channel 'c' 

RECALL is a backtrace facility which stores the registers for each trace 
step in a rolling buffer. The number of steps that can be stored depends 
on the memory available. 

RS 
Rl 
<ENTER> 
<ENTER> 

6.4 TRACE LEVEL 

set up a buffer for 8 steps 
recal 1 last step to channel 1 ... 

and previous step ... 
... and previous to that 

LU trace user mode code only, GOes when 
trace enters a trap (default) 

LS trace supervisor mode code as well as 
user mode code 

These two commands are used to specify whether QMON will trace the 
internal operations of QDOS (QDOS code executes in supervisor mode). By 
default the level is set to user mode only. However, if an exception 
occurs which causes QMON to be entered in supervisor mode, then the 
level is automatically reset to supervisor mode. 

Note that, if the level is set to user 
instruction is traced, the instn~tion 
traced w1less it is at a breakpoint. 

mode only, then when a trap 
following the trap will not be 



6.5 BREAKPOINTS 

B [addresses] 
BC 

toggle breakpoint(s) 
clear all breakpoints 

QMON can handle up to 7 permanent and one temporary breakpoints. 1be 
temporary breakpoints are set by some of the GO and TRACE commands and 
are cleared on completion of the command. 6 of the permanent set of 
breakpoints are 'toggled' by the 'B' command, or all of these are 
cleared by the BC command. At completion of the B command, the current 
set of permanent breakpoints is listed. 'Toggling' a breakpoint means 
setting the breakpoint if it is not already set, otherwise clearing it. 
1be seventh permanent breakpoint is set by the CB (macro command on 
breakpoint) command. 

B 
B 3ED80 

B 3ED80 3EDF8 

6.6 DISPLAY 

list the current set of breakpoints. 
if there is no breakpoint at $3ED80 

set one, otherwise clear it. 1ben list 
the current set of breakpoints. 

toggle the breakpoints at $3ED80 and 
$3EDF8. 

De [address [number]] display memory (in hex and ASCII) 
Dlc [address [number]] display instructions in memory 
DRc display registers 

1be display commands can all send their output to the auxiliary channel 
'c'. If given 'c' should be in the range 1 to 3. 

The format of these displays are quite different from each other. 

1be display memory command displays on each line: 

the start address of the line, 
8 or 16 bytes (depending on the window width) in HEX, 
the same bytes in ASCII if printable or else '.'; 

while the display instructions command displays on each line: 

the address of the instruction, 
the first 2 bytes of the instruction, 
the disassembled instruction. 

The default number of lines for these is 16 or one less than the height 
of the display window, whichever is less. 1be default display address is 
updated to be the address after the end of the display. 

1be display re~isters command displays: 

the status register (in hex·and the individual flags and the value of 
the interrupt mask) the alternative stack pointer, 

the values of the 8 data registers and the 8 address registers, 
the next instn1ction in display instrnction format. 

D 28000 
Dl 

D L-10 10 

DI * 

display the start of the system vars. 
display from encl of previous display 

to channel 1. 
display $10 bytes previous to last 

display address 
display instructions starting at the 

next instn1ct ion 



Default Command 

If the previous command was a 'D' or 'DI' command, then a blank line is 
taken to be another 'D' or 'DI' command to the same channel, and 
displaying the same number of bytes or instructions, starting from the 
new default address. 

Dil 3FCEO 8 

<ENTER> 

6.7 SET 

SB address byte 
SW address word 
SL address long_word 
SDn value 
SAn value 
SSP value 
SUSP value 
SSSP value 
SSR value 
SPC value 

The SET commands 

SW 3E7C4 40 
SD4 63 

6.8 MODIFY 

MBc [address] 
MWc [address] 
MLc [address] 
Mic [address] 

set a 

displays 8 instructions from address 
$3FCEO on channel 1 .... 

.... displays the next 8 instructions too. 

set byte in memory 
set word in memory 
set long word in memory 
set data register 
set address register 
set appropriate stack pointer 
set USP (user stack pointer) 
set SSP (supervisor stack pointer) 
set SR (status register) 
set PC (program counter - the address 

of the next instruction) 

single value. 

sets the word at $3E7C4 to $0040. 
sets D4 to $00000063. 

modify memory in bytes 
modify memory in words 
modify memory in long words 
modify instructions in memory 

The modify commands start a dialogue in either the 
window, or in the auxiliary channel 'c' (in the range 1 
be a CONsole channel. QMON writes out the address 
instruction at that address, and the user can 

primary channel 
to 3) which must 
and the value or 

press ENTER to leave the value or instruction unchanged, 
press UP ARROW to go back a byte, word (MW or MI) or long word 
press DOWN ARROW to go on a byte, word, long word or instruction 
press ESC to stop the dialogue, 
retype the value or instn1ct ion followed by enter 
or edit the instn1ction using cursor keys in the normal way. 

Qmon> MB 38798 
38798 70 
38799 le 
3879A 72 <ESC> 
Qmon> MW 
3879A 7204 <ESC> 
Qmon> MI 
3879A MOVEQ #$4,Dl 
3879C MOVEQ #$FF.D3 

start modifying bytes at $38798 
ENTER leaves byte unchanged 
byte changed to $1E 
ESC exits 
modify words at default address 
ESC exits 
modify instructions at default address 
ENTER leaves instruction unchanged 
... and so on. 

Because the up arrow moves back by one word in the MI command, this will 
tend to create spurious disassemblies when there are instructions which 
are more than a word long. Equally, this facility may be used to get the 
disassembler back into alignment if the MI command does not start on the 
first word of an instruction. 



6.9 EDIT 

Ee [address] edit memory in specified channel 

This is a hexadecimal and character window based editor. Memory contents 
may be changed simply by overtyping with the new values. The memory 
display is similar to that produced by the display command with memory 
addresses, hexadecimal values and characters. The up, down, left and 
right keys are used to move the cursor, and <TABULATE> is used to move 
between the hexadecimal area and the character area. <ESC> exits from 
the editor. 

6.10 FIND 

F value [range] 
F 'string' [range] 
FI 'string' [range] 

For FI 

find a string of bytes in memory 
find a string of bytes in memory 
find a string within a disassembled 

instn1ct ion 
continue last For FI 

These commands search for strings of bytes or instn1ctions. The default 
range for the search is from the base of the system variables up to the 
top of RAM. If a lower limit is given for the search range, then that 
default is reset, if both a lower limit and an upper limit are given 
then both defaults are reset. If no parameters are given then the 
previously specified parameter will be used, and the search will start 
one byte or one instruction beyond the last match found. 

The display address will be set to the even address which comes 8 bytes 
before the match. This means that a D or DI command will display the 
context of the match, while a modify command will start well before the 
match. 

The value should be specified in hexadecimal and should have not more 
than 64 digits (up to 32 bytes). Find string should be specified with a 
string of not more than 32 characters. Find Instruction should also be 
specified with a string of not more than 32 characters. The FI command 
scans the memory disassembling every word, each disassembled instruction 
is then searched for a matching string. This enables references to 
particular addresses to be found as well as searching for particular 
instruction formats. (Note that the disassembler uses hexadecimal 
notation and the particular forms of commands: ADDA, ADDI, etc.) As 
Finding an Instruction is very slow, the Find can be interrupted by 
pressing <ESC>. 

F 4AFB 

F 704774 37000 

F 'JOBS' 
F 
D 
FI 'addq.l #4,a7' 

find two bytes $4A and $FB in default 
range. 

reset range from $37000 up to default 
top, and find 3 bytes $70 $47 $74 

find the string 'JOBS' 
find next occurrence of 'JOBS' 
and display the memory around it 

find the instruction ADDQ.L #4,A7 



6.11 OPEN 

Oc name 
Oc 

opens 'name' as the debugger channel 'c' 
closes or detaches debugger channel 'c' 

The first action of the open command is to close or detach the channel 
open already as channel 'c'. If the channel is 'owned' by QMON, then the 
channel is closed, but if the channel is 'owned' by the SuperBASIC 
interpreter, it is merely forgotten. 

If no name is given, no new channel is opened. Otherwise, a new channel 
is opened to the device or file specified. 'c' must be in the range 1 to 
3 and the channel thus opened may be used by trace, display or (if a 
CONsole) modify commands. 

These auxiliary channels are shared by all jobs being monitored by QMON. 

When first loaded QMON has channel 1 opened to BASIC #1 and channel 2 
opened to BASIC #2. 

03 MDV2 LOG 

03 

6. 12 CALCULATE 

Cc address 

open file MDV2_LOG (a new file) as 
QMON auxiliary channel 3 

close or detach auxiliary channel 3 

calculates the given address and 
writes it in hexadecimal and decimal 
to channel 'c' 

This command is used to calculate an address. 

C 10(A6,Al) if A6 is $3b668 and Al is $448 then 
this will write out: 
3BACO 244416 

6. 13 MACRO CX>MMAND 

CS 
CT 
CB address 
cc 
ex 

set macro command 
execute command every trace step 
execute command at breakpoint 
clear CB and CT 
execute command 

A macro command is a compotmd command which can be invoked directly, at 
a specified breakpoint or at every trace step. The command is set up by 
the CS command. It is a single line with one or more commands separated 
by the '\' symbol. The command may be used to expand the short trace 
produced by QMON, or to display memory contents or set memory locations 
or registers at a breakpoint. If a command is to be executed at a 
breakpoint, then, if execution of the job is required to continue, the 
last command on the line should be a GO or QUICK instruction as 
appropriate. 

Qmon> CS 
> Dl (Al) 8 \ SSP -4(SP) \ SL (SP) (DO) \ G 
Qmon> CB 36786 
Qmon> G 

Just before the 
bytes pointed 
pointer wi 11 
stack. 

instruction at the breakpoint $36786 is executed, 8 
to by Al will be written to channel 1, then the stack 

be decremented by 4 and the contents of DO put on the 



MEDIA MANAGER SPECIAL EDITION 
MEDIA MANAGER 

la Manager Spedal Edition (MMSE) Is a program to 
used both when things have gone wrong as well as 

vhen things are perfectly OK. It allows for automatic. 
~ semi-automatic and manual correction of a huge variety 

of disk and tape problems. It allows you to explore disks 
and tapes to your heart·• content, producing all sorts of 
different diagnostic reports. MMSE Is very simple to 
operate, being menu-driven and assuming no degree of 
computer knowledge whatsoever. 

MMSE also allows you to tidy, catalogue, sort and order 
your disks and cartridges. 

The standard Media Manager Is both less powerful and 
less user-friendly, but manages to work on an 
unexpanded Ql. 

Both programs allow for data transfer between PC and 
Ql. With MMSE, this transfer Is at file and directory level, 
Is bl-dlrectlonal and Is completely automatic. 

SPECIAL DESKTOP PUBLISHER 
DESKTOP PUBLISHER 

These programs are quite primitive compared to 
Professional Publisher. However, If you have not 
experienced that program as yet. you wlll find both of 
these very competent. Both are capable of producing 
e,ccellent results. The cheaper one has fewer features but 
Is able to run on smaller systems. 

With the sole exception of Perfection, this Is the best 
word handling system on the Ql. Editor's features 
lndude an unrivalled degrff of programmablllty and the 
ablllty to cope with the entire 256 character ASCII set. 
The Special Edition has enhanced document-type 
fadlltles, Including column blocks and on-screen page 
break displays. Neither program Is suitable for 
computing novices. Until Perfection, Editor Special 
Edition would have been our 'Desert Island Program'. 

Editor SE can do a few things that Perfection can't, so 
the Ideal combination Is to have both (they are 
compatible at flle level and can multltask). If you order 
Editor SE at the ume time as Perfection~ you c.an have 
Editor SE at half price. 

l]=ttJGflt•1ft:\E:j(·t11l•EJ~·I 
iitiY.iUY61Uffi1tMid•IBiJN 
The Astrologer program teaches you Astrology from 
scratch and enables you to automatically produce text 
narrative on personality delineation, year-to-year and 

" nute-to-mlnute life predictions. compatlblllty 
erpretatlons and so on. Whether or not you believe In 

;trology - Indeed, especially If you do not - this 
program Is one that you cannot afford to have. You can 
tailor the readouts (both In terms of quantity and what 
Is said) to your own particular requirements. The amount 
of fun you can have with this program Is endless. Do not 
blame us If you start believing In astrology, though I 

Astronomer Is an extremely fast and accurate solar 
system calculator, with planetarium views, planet faces, 
edlpses, dnerama display etc_ 

TURBO BASIC COMPILER 
Turbo Is the finest BASIC compiler for the Ql and 
arguably the finest BASIC compiler for any computer! 

Turbo automatically converts working BASIC programs 
Into optimised machine code, usually with no need for 
human Intervention. The benefits of this conffrslon are 
vastly enhanced running speed (as well as much faster 
loading. encryption and automatic bug fixing for a variety 
of QL Interpreter oddities). Typical speed-up Is ~Ox - 100x. 

Turbo Is provided with a 200 command toolklt, adding 
many useful commands to BASIC. Most of these 
commands will be of Immediate use to the programmer, 
whether he Is a novice or an expert. There are commands 
to load strings and lloab Into RAM, and to extract them 

,,- automatically; to search memory and to move Its contents; 
'-, control Jobs and change their priorities, manage pipes, 

:ocatw and deallocate memory, to control both rubber 
•nd virtual arrays, to present INPUT with an editable 
default. to have random ..:cess to flies and much more. 

TOOLKIT Ill 
Toolklt HI starts where Toolklt I stopped, adding about 
60 new commands and enhancing many existing dual 
functions. Toolklt Ill Is available either on disk or on 
ROM, and works whether or not you have Toolklt II. 

Toolklt Ill commands can, with only a couple of 
exception~ be compiled using Turbo. 

QFLICK CARD INDEX 
All Ql ownen have a copy of Arthlve, supplied free with 
the QL Whllo, Arthlve Is tompetent, It Is very hard to get 
to grips with and Is not particularly fast. QFllck presents 
a very convenient alternative - a snappy , simple-to-use, 
pointer-controlled card lllo, database. You can move data 
between QAlck and Arthlve In either direction. 

QFllck Is not Itself programmable but we document Its 
data structure and give guidance on how to program It 
using Turbo. 

This suite of utllltles will greatly enhance your use of the 
Archive database system. 

Archdev + RTM Is a straight replacement for Arthlve: It 
gives enh.lnc.~ speed. greater workspace and • much 
deaner boot-up. All your existing appllcatlons wnl work. 

Database Analyser provides very fast and comprehensive 
statistics about your Archive databases. 

Archive Tutorial proceeds sy,.tematlc•lly through the 
whole philosophy and grammar of Archive, providing 
you with expert and patient guidance. 

Names + addresses, Mallmerge and Oat-Appoint are 
ready-to-run, off-the-shelf Archive appllcatlons, 
providing an addreu database, mallmerglng and 
appointment diary respectively. You now have no excuse 
not to use Archive. 

SEdlt allows you to create and edit screen format flies In 
Archive. Scrffnprlnt allows you to print them out. 

Recover allows you to get back lost Archive databases, 
created when you swltthed off the computer without 
properly exiting from Arthlve. 

XREF 
SUPERBASIC MONITOR 

BETTERBASIC EXPERT SYSTEM 
XRef analyses the structure of • BASIC program, 
providing detailed reports on things llke variable usage, 
what calls what. dynamic call hierarchy of procedures 
and function~ and so on. 

Super&aslc monitor actually monitors and reports on the 
performance of BASIC programs as they run under the 
Interpreter. 

lk-tterBaslc analyses and automatic.ally corrects structural 
flaw, In your program, and allow, you to customise 
things llke Indentation. number of stateme-nts per llne. 
filter Ing out of noise- words. etc. 

lhe three program, together provide a matchless 
diagnostic and auto-correcting facility for BASIC 
program,. 

TRANSFER UTILITY 
This progr,m copies flies at high speed between devices, 
performing translates as It goes along. Ideal for all sorts of 
applkatlon~ Including tramlen from mkrodrlve to disk. 

QMATHS SYSTEM 
This Is an Incredible mathematical compendium for the 
QL Pride of place goes to the symbolic problem solver: 
this can solve equations, simplify expressions, factorise, 
expand, etc. all symbolically. If you could sneak this one 
Into a maths examination, you would have a formidable 
ally. QMaths knows about all the algebraic operators, 
powers, roots, brackets, trigonometry, matrices, 
determinants. vectors. factorl•ls. permut•tlons. 
combinations, binomials, exponentl•ls. logarithms, 
hyperbollcs, Inverse functions, Infinite series Including 
T •ylor & Macl•urln expansions. complex numbers, 
conversions. Fourier serle1. and lots of calculus: both 
dllferentlal and Integral, lndudlng Integration by parts 
•nd definite Integrals. QMath, optionally displays Its 
workings and comes with a superb Interactive tutorial. 

The package also contains an Interpretive, fractal, lmage­
gener atlng language with loads of beautiful fractal 
programs supplied for you to use •nd edit - no 
programming sklll Is required. 

There Is also a multiple predslon floating point maths 
package, giving calculations at precisions up to over 600 
decimal digits of accuracy. 

There Is even more to this system, but we think we have 
told you enough. 

QMON MACHINE CODE MONITOR 
The latest version of Tony Tebby's superb monitor: •n 
absolute must for those who really want to know what 
Is going on Jn the QL No other machine code monitor 
even comes dose. 

Do not confuse thl1 prngr•m with Supttr8•1Jc monitor. 
which monitors Super Basic. not machine code. 

COMPARE 
This program compares files - data or program - at 
colossal speed. Where a mismatch Is detected, the 
relevant areas are hlghllghted and you c•n shuffle, 
dlspl•ce •nd align very ea<lly. 

CASH TRADER WITH ANALYSER 
PAYROLL - -'·· 

Cash trader with Analyser Is an accounts system de,lgned 
by businessmen and not by wretched accountants! 
Consequently, It has excellent reporting and 
management facllltles, and Is very flexible. It Is •lmed 
primarily at the layman, probably a sole trader running a 
small or medium sized business. All the features you 
would expect - lndudlng audit trail - are present. 

Payroll Is a reasonably flexible system designed to 
automate the payroll function Jn small businesses. 

Both programs are configurable, with editable defaults 
letting you adapt the programs from year to year. 

HARDBACK WITH FINDER 
This Is the ultimate hard disk bKkup and management 
utlllty, with ell the sophisticated features you could 
want. User dialogue ls via overlapping pop-up wlndowt­
the whole program Just Mis right. It Is possible to scan 
the disk at great speed, too. 

DISKTOOL WITH QUICKDISK 
This permits you to add password protection to disks, to 
optionally Increase disk storage cap.city on 0500 drives 
by 36K and to Increase speed of access by a, much as 
30%. All this Is done while maintaining full compatlblllty. 
Automatic Ille management Is also provided. 

DIGITAL C SPECIAL EDITION 
DIGITAL C 

These ue extremely fast and efficient C compilers, 
complying with and surpassing the Small C definition. 
The Special Edition goes much further, Including support 
for structures, pointers, long pointers, >64K code size, 
direct access to QDOS traps, etc. The Special Edition C 
generates code that runs about twice as fast as the other. 



Qmon> CS 
> D3 (Al) 8 \ D3 38688 8 
Qmon> CT 
Qmon> TU D6>10 

Until D6 is greater than 10, at every step there is a partial memory 
display to channel 3. 

7 EXAMPLES OF USE 

Note: press the ENTER key at the end of each command. 

7.1 SuperBASIC Extensions I 

To illustrate the use of QMON while developing extensions to the QL 
SuperBASIC, the JOBS procedure which is supplied with QMON will be 
examined. 

This first example illustrates the use of QMON in 512 pixel (4 colour) 
mode. This is the preferred mode for QMON as colour is of little help 
while the advantage of 80 column output over 40 column is very great. 
The example SuperBASIC Extensions II illustrates the use of 256 pixel 
mode. 

RESET the QL, 
put QMON in drive 1 and press Fl. 

When the cursor appears QMON will be loaded but inactive. Before 
invoking QMON load the job control extensions and try out the JOBS 
command by typinii 

LRUN MDVl JOB 
JOBS 

(or LRUN FLPl_JOB) 

The list of jobs currently executing in the QL is written to window #1; 
there should only be one, the SuperBASIC interpreter, being job 0, tag 
0, owner 0, priority 32 and no name. Now invoke QMON by typing 

QMON 

A prompt 'Qmon> ' should appear rn the command window. QMON is now 
linked into the SuperBASIC interpreter (and, by implication, linked into 
any jobs created by the SuperBASIC interpreter) and it is waiting for a 
command 

If the JOBS procedure is to be examined in action, a breakpoint should 
be set to enter QMON when the procedure is called. The entry point of 
JOBS will not be at the start of the resident procedure area, but we can 
find it by examining the procedure definition table which will be near 
the start of the resident procedure area. Now type 

Qmon> D 28000 (or d 28000) 

The base of the system variables area is now displayed in the command 
window. The address of the base of the resident procedure area is at 
address 2801C, that is the last two groups of digits on the right hand 
end of the second line. This address should be 3CAOO on a QL with 128 
kbytes of RAM. To display the start of the resident procedures in window 
#1, type 

Qmon> DI 3CAOO (or dl 3ca00) 



Those with expanded memory machines will need to work out their own 
addresses! 

The right hand edge of the display in window #1 is mostly nonsense 
characters and dots. However, from the third line onwards the words 
'AJOB', 'RJOB', 'SPJOB, 'JOBS' are visible. This is the procedure 
definition table. 

To look at the start of the JOBS procedure, the start address of the 
procedure is found by adding the offset (OOAO) which precedes the name 
'JOBS' in the table to the address of this offset (3CA28). 

Qmon> DI2 3CA28+AO 

The code, now listed in window #2, starts with a branch to a routine to 
get the channel for the JOBS command, followed by a check on the error 
return from this subroutine. The register Il7 is used as a count of the 
number of lines written to the output channel, and so has one added to 
it before the heading line is written out. To trace this code set a 
breakpoint at the start address 3CA28+AO: 

Qmon> B L 
BRP 3CAC8 
Qmon> G 
JOBS 

(Lis the last address used) 
(confirms breakpoint set) 
(go on back to SuperBASIC) 
(do JOBS procedure) 

The response to this should be the message 'At brp' (at breakpoint) 
followed by a display of the registers. The next instruction to be 
executed (a BSR.L) is displayed at the end. This call to a not very 
interesting routine is bypassed. 

Qmon> GR (go until return) 

The Z flag in the condition code register should be set, so that the 
conditional branch (BNE) should not be taken. The condition code 
register is the less significant byte of the status register (SR) and is 
in the first line of the register display. The individual flags X, N, Z, 
V, and Care put in the line if they are set. The digit is the current 
interrupt mask value. 

Qmon> T (trace, just <ENTER> would do) 

One instruction has been traced and the next is displayed. From now on 
just pressing ENTER will trace one instruction at a time. Note that when 
the next instruction to be traced is a TRAP then the trace is suspended 
unt i 1 the instn1ction after the TRAP has been executed. As this is is 
usually a TST.L DO, this is not a very serious problem. 

Repeated operations in QMON are interruptable using the ESC key. Type: 

Qmon> DI2 * FFFF (display many instructions) 

pressing ESC will stop the display, pressing ENTER will restart it. 

7.2 SuperBASIC Extensions II 

This a repeat of the SuperBASIC Extensions I, but for TV mode. 

RESET the QL, 
put QMON in drive 1 and press F2. 



When the cursor appears, QMON will be loaded 
invoking QMON load the job control extensions 
command by typing 

but inactive. Before 
and try out the JOBS 

LRUN MDVI JOB 
JOBS 

(or LRUN FLPl_JOB) 

The 1 ist of jobs currently executing in the QL is written to window #1; 
there should only be one, the SuperBASIC interpreter, being job 0, tag 
0, owner 0, priority 32 and no name. Now invoke QMON window #1 by typing 

QMON #1 

A prompt 'Qmon> ' should appear in the window #1. In this mode there is 
insufficient room for the register display in the command window, so it 
is necessary to use a larger window for QMON. QMON is now linked into 
the SuperBASIC interpreter (and, by implication, 1 inked into any jobs 
created by the SuperBASIC interpreter) and it is waiting for a command. 

If the JOBS procedure is to be examined in action, a breakpoint should 
be set to enter QMON when the procedure is called. The entry point of 
JOBS will not be at the start of the resident procedure area, but we can 
find it by examining the procedure definition table which will be near 
the start of the resident procedure area. Now type 

Qmon> D 28000 20 (or cl 28000 20) 

The base of the system variables area is now displayed in window #1. The 
address of the base of the resident procedure area is at address 2801C, 
that is the last two groups of digits on the right hand end of the 
fourth line. This address should be 3CAOO on a QL with 128 kbytes of 
RAM. To display the start of the resident procedures, type 

Qmon> D 3CAOO (or d 3ca00) 

The right hand edge of the display in window #1 is mostly nonsense 
characters and dots. However, from the third line onwards the words 
'AJOB', 'RJOB', 'SPJOB, 'JOBS' are visible. This is the procedure 
definition table. 

To look at the start of the JOBS procedure, the start address of the 
procedure is found by adding the offset (OOAO) which precedes the name 
'JOBS' in the table to the address of this offset (3CA28). 

Qmon> DI 3CA28+AO 

The code, now listed in window #1, starts with a branch to a routine to 
get the channel for the JOBS command, fol lowed by a check on the error 
return from this subroutine. The register D7 is used as a count of the 
number of lines written to the output channel, and so has one added to 
it before the heading line is written out. To trace this code set a 
breakpoint at the start address 3CA28+AO: 

Qmon> B L 
BRP 3CAC8 
Qmon> G 
JOBS 

(Lis the last address used) 
(confirms breakpoint set) 
(go on back to SuperBASIC) 
(do JOBS procedure) 

The response to this should be the message 'At brp' (at breakpoint) 
followed by a display of the registers. The next instruction to be 
executed (a BSR.L) is displayed at the end. This call to a not very 
interesting routine is bypassed 

Qmon> GR (go tmtil return) 



The Z flag in the condition code register should be set, so that the 
conditional branch (BNE) should not be taken. The condition code 
register is the less significant byte of the status register (SR) and is 
in the first line of the register display. The individual flags X, N, Z, 
V, and Care put in the line if they are set. The digit is the current 
interrupt mask value. 

Qmon> T (trace, just <ENTER> would do) 

One instruction has been traced and the next is displayed. From now on 
just pressing ENTER will trace one instruction at a time. Note that when 
the next instruction to be traced is a TRAP then the trace is suspended 
until the instruction after the TRAP has been executed. As this is is 
usually a TST.L DO, this is not a very serious problem. 

Repeated operations in QMON are interruptable using the ESC key. Type 

Qmon> DI* FFFF (display many instructions) 

Pressing ESC will stop the display, pressing ENTER will restart it. The 
same principle holds for output to an external device. If a serial 
printer is available, plug it into SERl, type 

Qmon> 03 SERl 
Qmon> DI3 * FFFF 
<ESC> 
Qmon> G 

(open SERl as channel 3) 
(display on printer) 
(stops the printer output) 
(carry on) 

7.3 SuperBASIC Extensions III 

After trying the previous examples, it is a simple matter to use QMON to 
generate some trivial code. The first few bytes of the QMON and JOBS 
extensions are only used for initialisation. Once called they may be 
overwritten with complete safety. So, to illustrate the use of the QMON 
assembler type 

QMON 
Qmon> MI 3CAOO 
3CAOO LEA $3CAOE(PC) ,Al 

Type 

MOVEQ #$F6,DO<ENTER> 

(modify instructions) 
(first instruction) 

This instniction is accepted, but is a different length from the 
previous instruct ion, and so the disassembler now makes a valiant, if 
incorrect, attempt at interpreting the next word as the start of a four 
byte instruction. 

Type 

RTS<ENTER> 
<ESC> 

Qmon> G 

The escape returns to QMON command mode. 'G' returns to BASIC. 

This code sets the error register to 'end of file' and returns. Try 

CALL RESPR(O) (call base of resident procs) 

The message 'end of file' should be written out. 



7 .4 Tips 

If you are uncertain as to where to put a breakpoint, use the MI command 
and move through the code using the clown arrow (or possibly up arrow) 
key, and, when you have found the instruction, press <ESC> and then type 

B N (breakpoint at next address) 

If you are uncertain as to what is about to happen, use Quick trace 
rather than Going. Then, if anything untoward happens, you can stop it 
with <ESC>. 

It is a good idea, when you are starting to develop software, to scatter 
a number of TRAP #15 instruct ions through your code. These wi 11 not 
affect the normal operation of the code, but, if QMON has been invoked, 
then QMON will be entered at these instructions. 

7.5 Executable Programs 

A file 'clocks' is included with QMON as an example of an executable 
program. 

Clocks is a digital clock which executes in a default window which is 
set up to be in the top right hand corner of window #0 for the default 
monitor mode windows. The clock displays the day of the week, as well as 
the day, month and time. Both the default window and the characters 
displayed may be patched. 

The characters displayed in the window are selected using a list of 
bytes. The first byte is the number of bytes in the rest of the list and 
each of the fol lowing bytes selects a character to be written. If the 
byte is greater than hex lF then the byte is the 'value' (or 'code') of 
a character to be written. If the byte is between O and $17 (inclusive) 
then it is a pointer to a buffer containing the characters of the day 
and date: 

00 08 10 18 
I I 
I I 

clay#yyyy mmm dd hh:mm:ss (the 4th byte is unset) 

The 1 ist for the clefaul t display is: 

14,0,l,2,C,D.E,F,9.A,B.C,10,ll,12,13,14,15,l6,l7,20 

The addresses which may be patched in the program CLOCKS are: 

Address Length Value Meaning 

A8 byte 00 border width 
A9 byte 00 border colour 
AA byte 10 strip colour 
AB byte 07 ink colour 
AC word 003C window width 
AE word 0014 window height 
BO word OlCO X origin 
B2 word OOCE Y origin 

B4 bytes character list 



The assembler listing of this program is in the file CLOCKS_LIST, it 
will help to follow the execution of the program if you have a listing 
of this file handy. To experiment with this program: 

RESET the QL. 
put QMON in drive I and press Fl, 
type LRUN FLPI_JOB 
type QMON FLPI_CLOCKS 

A register display should appear rn window #1. The first instruction of 
CLOCKS has been executed and the next instruction will set A6 to zero. 
Type 

Qmon> D (display) 

The start of the program should be displayed, and the name should be 
visible on the right hand side of the display. Type 

Qmon> T 20 (trace 20) 

When 32 instrnctions have been traced another register display will be 
written. Type 

Qmon> Q FFFF 

A large number of instructions will now be traced in quick trace mode, 
pressing <ESC> will stop execution. 

To trace the execution from the point where the clock is read, type 

Qmon> FI 'Q #$13,DO' S 
3Dl 16 
Qmon> MI 
3DIOE MOVEQ #$FF,Dl 
3D110 MOVEQ #$A,D3 
3D112 SUBA.L Al.Al 
3D114 TRAP #1 
3D116 MOVEQ #$13,DO 
3D118 TRAP #1 <ESC> 
Qmon> B N 
Qmon> G 

(find MOVEQ #$13,DO after the start) 

(confirm it) 

(escape) 
(set breakpoint at next address) 

The program should now stop at the breakpoint. Type 

Qmon> T (or j11st <ENTER>) 

The time has been fetched in Dl, and the next instructions enter the ROM 
to convert the time to characters. 

Qmon> T (next is JSR (A2)) 
Qmon> GR (go until return) 
Qmon> T 
Qmon> T (next is JSR (A2)) 
Qmon> GR (go until return) 
Qmon> D (al) 20 (print 20 bytes from (a 1)) 

As the next few instructions are traced, it should become apparent that 
a loop is being executed, writing out individual characters. D6 is being 
decremented. To speed up the trace, type 

Qmon> QU D6=1 (quick trace until D6=1) 

TI1e trace should stop when D6 has been decremented and there is a 
conditional branch BGT.S as the next instruction. The final iteration 
rotmd the loop may now be traced one step at a time. 



Typing the command 'G' will cause the program to execute w1til it comes 
to the breakpoint again, so type 

Qmon> BC 
Qmon> G 

(clear breakpoints) 
(carry on) 

Use CTRL SPACE to release SuperBASIC, (this, and CTRL C, could have been 
done at any stage to list directories etc.) and type 

JOBS 

There should now be two jobs running. The clock is job 1, tag O owner 0, 
priority 1 and name 'Clocks'. To start tracing it again, type 

QMON 1 
or QMON 0\1 

8 Quick Reference Guide 

GO and TRACE 

G 
G 
GB 
GB 
GR 

address 
address 
address condition 

T C 
T c number 
TU c condition 
TB c address 
TB c address condition 
TR C 

Q number 
QU condition 
QB address 
QB address condition 
QR 

RECALL 

RS 
R 

number 
C 

TRACE level 

LU 

LS 

BREAKPOINTS 

B addresses 
BC 

DISPLAY memory 

D 
DI 
DR 

c address number 
c address number 
C 

(monitor job 1) 
(monitor job 1 in transient window 0) 

GO from current instruction 
GO from address 
GO until breakpoint at address 
GO until condition at breakpoint 
GO until return 

TRACE one instruction 
TRACE number of instructions 
TRACE w1til condition 
TRACE until breakpoint at address 
TRACE ll!1 t i 1 concl it ion at breakpoint 
TRACE W1til return 

QUICK number of instructions 
QUICK w1til condition 
QUICK until breakpoint at address 
QUICK W1til condition at breakpoint 
QUICK until return 

creates buffer for number of steps 
recall last step 

traces user mode code only, GOes when 
trace enters a trap (default) 

traces supervisor mode code as well as 
user mode code 

toggle breakpoint(s) and list them 
clear all breakpoints 

display memory (in hex and ASCII) 
display instructions in memory 
display registers 



SET memory and registers 

SB address byte 
SW address word 
SL address long word 
SD n value 
SA n value 
SSP value 
SUSP value 
SSSP value 
SSR value 
SPC value 

MODIFY memory and registers 

MB c address 
MW c address 
ML c address 
MI c address 

E c address 

FIND in memory 

F value range 
F 'string' 
FI 'string' 
For FI 

OPEN and Close 

0 
0 

c name 
C 

CALCULATE address 

C address 

Macro COMMANDS 

CS 
CT 
CB 
cc 
ex 

address 

range 
range 

9 Job Control Extensions 

set byte in memory 
set word in memory 
set long word in memory 
set data register 
set address register 
set appropriate stack pointer 
set USP (user stack pointer) 
set SSP (supervisor stack pointer) 
set SR (status register) 
set PC (program co1mter) 

modify memory in bytes 
modify memory in words 
modify memory in long words 
modify instructions in memory 

edit memory 

find a matching string of bytes. 
find a matching string of characters 
find string in an instruction 
continue search 

opens 'name' as channel 'c' 
closes charmel 'c' 

calculates address and displays it 

set macro command 
execute command every trace step 
execute command at breakpoint 
clear Cl' or CB 
execute command 

There are four job control extensions in the file JOBS BIN. These are 
identical in form to the commands in the Sinclair QL Toolkit. 

JOBS 
JOBS #channel 
RJOB job number, job tag, error code 
AJOB job number, job tag, priority 
SPJOB job number, job tag, priority 

list all jobs 
list all jobs to channel 
remove job 
activate job 
set job priority 

The job number and tag are listed with the job name by the JOBS command. 
A job may only be activated if it has a priority of zero. On activation, 
a job will start execution at the start address. 



10 QMON Version Updates 

This version of QMON is the first rev1s1on to QMON in more than 5 years. 
In this time there had been a number of changes the QL world which have 
left QMON behind. This version is slightly larger, and copes with many 
of these changes. 

10.1 Minerva 

The QMON exception handling allows for the Minerva second screen. The 
QMON SuperBASIC command copes with integer constants. 

10.2 Pointer Environment 

SuperBASIC is automatically suspended by the QMON command if 

a) QMON is invoked for another Job and 
b) QMON is invoked in channel owned by SuperBASIC. 

The new command QMON_W suspends SuperBASIC - you can still break in with 
CTRL SPACE. 

The QMON output window is automatically picked before it is used. 

The Job being monitored is picked when you GO. 

Within QMON. the Job being monitored tan be picked momentarily: 

FI 0.5 seconds 
F2 1.0 seconds 
F3 2.0 seconds 
F4 4.0 seconds 
FS 8.0 Seconds 

10.3 GOLD card I Atari ST 

The keyboard a11to-repeat is independent of processor speed. 

10.4 General 

The Find buffer has been enlarged to 32 bytes 

11 General Structure of QIK)N 

QMON divides into four distinct sections plus utilities. 

Set up 

Exception handling 

Commands 

called from SuperBASIC in QL QMON 

vectored entries 

display M/C status, modify M/C status or set 
QMON parameters 

(Dis)assembler single line assembler/disassembler 

QMON utilities 1/0, numeric conversions, etc 

SuperBASIC utilities procedure parameter handling 



There are some general rules which apply to the code of QMON. These 
rules do not limit the generality of QMON, but make it possible for QMON 
(which is entered on exception and thus uses the supervisor mode stack) 
to trace jobs in the multitasking environment of QDOS which has a single 
shared supervisor stack and where supervisor mode code is treated as 
atomic. 

While waiting for I/0, QMON idles in the mode of the job (or task) 
which caused the entry into QMON. 

QMON does not use any user mode stack. 

Any path of subroutine calls that leads to an I/0 call, is required 
to maintain the supervisor stack in a clean state. 

QMON does not modify the base register A6. 

11.1 Setup 

The setup code is environment specific. In the case of the QL, the setup 
code is called from SuperBASIC and allocates the QDOS exception vector 
together with a QMON working area. QMON uses four I/0 channels, these 
are identified by a long word. In the case of QL QMON, this long word is 
a channe 1 ID. 

11.2 Exception processing 

The exception processing starts with a vectored jump to a set of 
branches to subroutines, followed by an exception name. The effect of 
this is to put a pointer to the exception name on the stack. Illegal 
instruction is used as a breakpoint, so this is flagged in the MSB of 
address. TRACE exception is indicated with a zero address. 

The first action of the exception processing code is to set the pointer 
to the QMON working area. In the QL QMON, this is the same as the 
exceptirn1 vector address. Next, the registers are saved. (Note that in 
the QL, a program's data area is potentially moveable; A6 (base 
register) and USP are liable to be changed whenever I/0 is performed.) 

If the primary channel save area pointer is set, then the command window 
is swapped into the screen. This is QL specific. 

11 . 3 Commands 

When the exception processing is complete, QMON will either return to 
the job or task, or call the command routine to accept commands to 
display or modify memory or registers, or to set the QMON parameters for 
breakpoints or traci1v. 

The command routine is also entered directly from SuperBASIC. 

The command table is in the main program and may be extended or altered 
without any difficulty. 

11.4 Assembler/ disassembler 

The assembler and disassembler are two independent modules which share 
the instruction definition tables. 



11.5 QMON utilities 

There are three QMON utility routines. One is the QOOS specific I/0 
routine, the other two are the general purpose routines for getting 
i terns from the buff er and putting them into the buffer. 

11.6 SuperBASIC utilities 

The SuperBASIC utilities are called from the QL setup routine only. 

11.7 Impure code 

There is only one instance of impure code. This is the auxiliary channel 
table embedded in the QDOS specific channel switching routine. 

11.8 Register usage 

DO (together with the status register) is used for error code retun1s; 
also used for loop cotmters etc. 

Dl is used to hold the next character or digit when tmbuff ering. 

D2 is returned from GET with the value of a number or address 
expression. It also holds the value of the last or only parameter 
set by COMMAND before a command routine is called. 

AO is a rwming pointer to the buffer (used by COMMAND, GET, PUT, DIS 
and SING). 

Al is a pointer to the code to be assembled or disassembled by DIS and 
SING. 

A3 is the address set as the first parameter of two by COMMAND, and then 
used by the command routines as a pointer to memory. 

AS always points to the QMON data area. 

A6 is left alone. 



Fed up of DIGITAL PRECISION telling 
you how very good their software is? 

J "As you might surmise by this lime, I arn impressed by QMJ\THS's abilities. I laving 
noted that DIGITAL PRECISION's advertising lends lo be loaded with superlatives 
(incredible, ultimate, superb come to mind), I had approached this evaluation with 
some scepticism. That scepticism has vanished." > INTERNJ\TIONJ\L QL 
REPORT (IQLR, available from Miracle Systems) May/June 1993 issue, Official Review 
b~ M.Laverne commissioned by IQLR (who bought their review copy of the program). 

V "PERFECTION is an exciting, full-flavoured, general purpose word processor of 
Incredible capacity ... PERFECTION has now been outshone by the recently released 
PERFECTION SPECIAL EDmON ... The discoveries began to trip over themselves as 
PERFECTION SE responded to the keyboard with unexpected speed and 
inteUigence ... PERFECTION SE is blindingly fast at most things, and you are never 
left wailing for ii. PERFECTION is everything that Quill never became: easy lo use, 
very flexible, loaded with genuinely useful features, cleanly multi-tasking, capacious 
and incredibly fast. The SPECIAL EDmON offers 12 cylinder power and luxury lo an 
already impressive package." > SINCLAIR QL WORLD magazine Official Review, 
.Af,ril 1993 issue, by THE Mike Uoi,d of Keyword Index I New QL User Guide fame. 

V "I find PROFESSIONAL PUBLISHER an outstandingly good program that really 
does aUow highly professional documents to be produced. For your interest I have 
included a few samples of work done for school using a combination of PERFECTION, 
PROFESSIONAL PUBLISHER, QUICKLASER and EYE-Q. You will be pleased to 
know that the quality has been rated so highly that people do not believe ii can really 
have been done with just a QL. .. I must stress that I am already highly impressed with, 
and very satisfied by, the performance of PROFESSIONAL PUBLISHER and all the 
other DP programs that I use... I seem lo learn something new that can be done 
almost each lime I use the program. Very many thanks for helping lo keep the QL 
ahead of the field." > Marlin J Neave, Headteacher, Walton County Jnr School, 

,Brandon Rd, Watton, Norfolk, IP25 6AL (unsolicited letter dated 18 May 1993 
,y!ering more programs: Mr Neave had paid fuU price for everything). 

I/ "LIGHTNING SPECIAL EDITION accelerates QL operation as nothing else does ... 
more than lOx is achievable and 2x-4x is typical... I could not fault LIGHTNING 
SPECIAL EDfTION on anything. It is a clear winner and a best buy al £49.95." > 

. SINCLAIR QL WORLD magazine Official Review, April 1990 issue, by Ron Massey, 
wj,o wrote EDITOR (bought full price) was "Superb" in an earlier review. 

,/ "PERFECTION is well named" > R.1-1.Pelford, Kingston Hill, Surrey, KT2 7LJ 
('tJSOllcited letter received May 25, .1993: another _full price purchaser & upgrader). 

'I/ "When my ideal program hnaUy amved m the forrn of PROFESSIO~~L 
PUBLISHER, ii surpassed aU my expectations ... PROFESSIONAL PUBLISHER (1s) m 
a class of its own, and makes ii the only QL desktop publishing program for the very 
serious user ... Until Digital Precision released PROFESSIONAL PUBLISHER, my 
opinion was that the use I could make of desktop publishing was mainly restricted lo 
short documents ... PROFESSIONAL PUBLISHER is a very versatile program ... The 
iUuslrations for this series of articles have aU been produced on PROFESSIONAL 
PUBLISHER ... My printer is a BROTHER 9-pin dot matrix printer. It does illustrate 
the very high quality that can be obtained from PROFESSIONAL PUBLISHER even 
when using a simple printer." > SINCLAIR QL WORLD magazine Guide lo desktop 
publishing f'A Questio~. of Dots'1. January 1992 lo December 1992 issues: the 
reviewer had bought PROFESSIONAL PUBLISHER, PERFECTION SE, FONT 
EJ'll.ARGER, TOOLBOXES, QUICKLASER etc from Digital Precision all at full price. 

V "I am aware that over the years Digital Precision has given considerable suJJport to 
the QL scene but seldom, ii ever, can there have been such estimable service as I 
recently encountered with PERFECTION PLUS." > The Hon. W.D.R. Spens, 
Bridgewater, Somerset, TA5 lHG, QUANTA magazine, March 1992 issue. Mr 
Spens has bought a lot of his software from Digital Precision, all at full price of course. 

·v 'The Digital Precision Desktop Publisher was righlly hailed as an exlraordin.ary 
programming achievement when ii was released two years ago. Mike Llo.,.J casts a 
professional eye over Digital Precision's latest page-making blockbuster 
(PROFESSIONAL PUBUSHER/ and finds plenty to be pleased about ... there is 
unlikely lo be a single program of such magnitude and quality (as PROFESSIONAL 
PUBUSHER) written for the Sinclair QL." > SINCLAIR QL WORLD Official 
Rpview, August 1989 issue, by M.Uoi,d, who personaUy bought all this at fuU price. 

V "EDITOR is a liberation. After Quill, ii was like jumping from an aquarium into the 
sea. It has become part of my professional life ... Everyone is now writing about the 
exceUence of PERFECTION. I have not tried ii, not having any perceived need for ii 
{having EDTTOR}' > Suzanne Cronje, QUANTA magazine, May 1992 issue, page 2. 
~ Cronje naturally had paid the fuD price for her copy of EDITOR SE etc. 
V "I have found (PERFECTION) lo be simply excellent, Ids!, packed with features 
and very weU thought out. I can find little to say that wiD convey just how good this 
program Is, except to quote Digital Precision's own advertising: PERFECTION wiU 
blow your socks off. PERFECTION is the program that QuiU users have been 
wpiting for."> SINCLAIR QL WORLD's first Official Review, May 1991 issue. 

V "Oiqital Precision (DP) decided lo begin work on a replacement for Quill which 
would be very quick, simple to use and contain lots of excellent features - something 
upon which DP have built a very strong reputation in the QL market... Overall, the 
speed-up (of just the first release of PERFEC770N - if is much faster now) on even a 
humble QL with Trump Card is amazing when compared with Quill (or any other 
word processor). On top of this, the program provides many excellent and well 
thought out features, each of which is easy to use ... (it) is certainly years ahead of the 
competition on the QL (and even on many PCs)." > R.Mellor, c/o CGH Services, 
Cwm Gwen HaU, Pencader, Dyfed, SA39 9HA; Official Review of the very first 
version of PERFECTION in QL TECHNICAL REVIEW issue 7: and the reviewer 
personaUy bought his own copy of this program, and many others at full price, from 
Digital Precision. Earlier QL TR reviews pronounced LIGI-ITNING ijust the standard 
v~rsion) superior lo the competition and ADVENTURE CREA :'ON TOOL excellent. " 
V "PERFECTION SE is superb!! With Gold Card, ii puts life m the fast lane. Thanks. 
> Leonard Singleton, Bletchley, MK3 6BP, June 1993, a full price purchaser (=lpp). 

J "As a recent user of PERFECTION PLUS SE, may I add my thanks and praises lo 
the ones I am sure you have already received ... keep up the excellent work." > R 
Sj.,wson, East Molesey, Surrey, KT8 OBP(unsolicited letter from full price purchaser). 

V "At about 360,000 words, the Mega SPELLCHECKER dictionary does not have 
much compelilion, on any compulerl (Spellchecking) is about lour times as last as the 
bes! figures I have seen with olhcr chC'ckers on QL and PC." > SINCLAIR QL 
WORLD m..,gazine official review of PERFECTION spelkhecker, September 1992 
issue, by Bryan Davies of Troubleshooter repute (review copies of all the competing 
Pjoducts supplied to SINCLAIR QL WORLD by their respective publishers). 

'I/ "In the past I have purchased a number of your programs and have never failed lo 
be impressed by the quality of both product and documentation. (So) please send a list 
o~ your current products."> V.Negri, Hempton, Norfolk, NR21 7LF, June 1993, lpp. 

V 'This Is my first letter with PERFECTIO~ St. I must sal! I'm Impressed with It and ii 
is certainly fast. Hooray, goodbye lo Archive! > P.1-1.Hedbron, Reigate, RH2 ODJ, a 
f~I price purchaser now using PERFECTION to replace not only Quill but Archive too. 

V "I have been using PROFESSIONAL PUBLISHER for about eighteen months now ... 
what you can do with ii is colossal ... I got Digital Precision's QUICKLASER. The 
results are as good as (Digital Precision) says in its advertisements ... " > P.Hamil, 
Peterborough, Cambs, PE8 6RH, QUANTA magazine, Volume 9 issues 4/12. Mr 
~~,mill (full price purchaser) then makes suggestions lo users re optimal page sizes. 

V "Once again I would like lo say thank you for your help. I would 1.ike lo teU ':he 
world what nice guys you are but unfortunately I have no contact with the outside 
v.rrld." > J.Bailey, Godshill, Ventnor, P038 3JJ (fllll price purchaser, 24 May 1993). 

'I/ "PC CONQUEROR GOLD SPECIAL EDmON is an exceUenl product 
accompanied, as so often with Digital Precision software, by a comprehensive a;;;! 
informative manual. TI1e program does a difficult job, and does ii weU ... OveraD, this 
program is much faster, more compatible and capable .. ."> SINCLAIR QL WORLD 
qllicial Review, March 1993 Issue, by M.Knight (bought many DP programs fllll price). 

,/ "With printing of the quality that this page bears witness to, I am a very satisfied 
PERFECTION user. I hope that you continue lo provide the software Innovation and 
the accessible backup which Is great. So, thank you very much again and may I wish 
'l</1 every good fortune."> P.Slewart, Temple, London, EC4Y 9BE, 10 May 1993, fpp. 

V "Many thanks for the update of PERFECTION SPECIAL EDITION. I am suitably 
impressed. Congratulations on producing the only word processor that I know that 
offers the best of all worlds as far as formatting is concerned. After QuiD, 
PERFECTION Is like a breath of fresh air." > Geoff Wicks, 1097HL Amsterdam, 
Netherlands (unsolicited letter dated 13 June 1993: all software Including LIGHTNING 
PfRFECTION SE, PRO PUBLISHER, CONQUEROR SE etc. purchased al fllll price). 

V "J\11 I can say about QMA TIIS is: WOW!" > Robin Wyke-HoUoway, Salisbury, SP5 
4 YJG (unsolicited letter received April 1993: Mr Holloway Is a fuU price purchaser). 

V "I have had PERFECTION from the early days and have had many hours pleasure 
finding out more and more of its briUiant features. May I ofle~ my congratulations on 
such an easy lo use program which does everything I want - and more besides." > 
F ,Merrison, Pinner, I-IA5 5AZ, !pp, thanking us for fixing a printer problem he "d had. 
V "Having used a range of desktop publishers on the Atari ST & Amiga, I admit I am 
very impressed with the superior performance of PROFESSIONAL PUBLISHER. It 
contains everything required" > SINCLAIR QL WORLD January 1989 issue, article 
e9tilled "Six of the Best" which also praised live other new Digital Precision programs. 

'I/ "I find ii difficult lo express my gratitude for the s~ed of your respo.nse, a~ lo~ 
the opportunity to see Inside two excellent programs which I have long enJoyed using. 
> Richard Walker, Enniskillen, BT74 7LG, fuU price purchaser and QL expert. 

J "May I take this opportunity to say that I have, in the past, found the software you 
have supplied me with (LIGHTNING etc.) to be of extremely high standard, on a par 
with that found in industry-standard PC packages. Keep up the good work. Without 
your quality software, I would be forced to abandon the QL and go lo a PC." > G. 
Reynolds, Crosby, Liverpool, L23 OSS (unsolicited letter dated April 2 1993. placing a 
further order for DP software: all programs old & new were purchased at fllll price). 

JJ This Is but a casual selection, drawing only on extracts from recent letters and reviews. 
We could locate >1000 complimentary communications but we'd prefer to spend our time 
pro<iudng ne1u pr0!7rams! We rC'/er 1,olential customers (exlstln!J u~rs of DP product.-; alrC'odv 
know /,ow good tliey are) to f>O!Je., 18"19 of the September 1988 ls.me of Sine/air QL World, 
whlc/1 contained well over tbu.e...h.tmdud_otlu:r_ unsollctted quotations from happy Dig/la/ 
Precision customers That cullectlon couered only three program! (and that too onlv partly - we 
ran out o/ space} and predated the relea.~ of what many consider to be our best software 
(UGIITNING SF., PERFECTION SF., PROFESSIONI\L PUBLISHER, CONQUEROR SE etc). 
We reprodua, those pages below, duly reduced to /II. If you wont a readable copy, consult tl,e 
releuont back Issue or send us an SAE or ask for a Juli-sized copy while ordering from us ... 

So hear it from their customers! 



QMON and JMON Version 2.06 
There are two additional facilities in QMON and a completely independent 

version of QMON called JMON which is specifically adapted for tracing and 
debuggingjobs and has a new user interface using the Extended Environment. 

QMON is in the file QMON. 

JMON is in the file JMON. 

In addition, QMON and JMON now detect the processor type (6800x, 68010, 
68020, 68030 and 68040) and adapt their stack frame and cache handling 
appropriately. The assembler and disassembler are still limited to the 68000 
instruction set. 

Either QMON or JMON should be loaded as resident extensions (LRESPR or 
RESPR, LSYTES, CALL). It will not normally be necessary to load both. 

New Facilities in QMON and JMON 2.06 

TL Command 

The traps #5 to #15 do not now necessarily cause the execution of a job 
monitored by QMON (JMON) to be halted. The trap number is checked against an 
internal mask and, if the trap number is higher than the mask level, the execution 
continues. The trap level is set by the TL command. 

TL level 

TL D 

set trap mask to "level" 

set trap mask to $D (13) to ignore traps 14 and 15 

The initial trap level is O - all traps are ignored. 

Permanent Breakpoints 

Permanent breakpoints may be put into a program by inserting the two words 
$4AFB (the standard illegal instruction) and $EDES ~nter debugger). On entry to 
QMON (JMON), the program counter is moved to the instruction after the $EDES. 

JMON 

JMON should only be invoked if both the Pointer Interface and the Window 
Manager have been installed. 

JMON can be invoked from SuperBASIC with the command JMON. 

JMON jobnumber or filename 

JMON 1 

JMON FRED 

monitor a job or start a new job with JMON 

monitor job 1 

execute FRED (data default) under JMON 

The job is monitored within the windows of a separate monitoring job. This 
dependent job may be put to sleep or woken while the monitored job is executing or 
while it is halted under the control of JMON. Waking the monitoring job halts the 
monitored job. The monitoring job may also be woken by using the JMON 
command in SuperSASIC. 

JMON jobnumber wakes the monitor for job "jobnumber" 


